11th Physics **1** Motion 2019-20

Orientation

- 1. Seating
- 2. Absence and Tardiness: A student arriving after chime will be marked **tardy**. A student arriving to or leaving class more than 20 minutes will be marked **absent**.
- 3. Local Rule: *No scribbles on desks (BVS!), *No chewing gum, *Use your own <u>calculator(x smartphone)</u>.
- 4. Textbook and Packets
- 5. Physics Website <u>www.tmoritani.com/KNY-Physics</u> (ID: keio, PW: wakakichi)
- 6. Tests: 2 mini-tests/Q + Exam; Past tests with solutions
- 7. Labs and Lab Reports "How to write." Senpai's reports.
- 8. Grade: Tests 55%, Labs 35%, Class 10%
- 9. Schedule (Class and Tests) on the website
- 10. Preparation and Review
- 11. Extra help: Morning () and after class
- 12. Exchanging Classes

Yearly Schedule

Quarter	Chapter	Walker "Physics	Test
	1	Introduction to Physics	1Q - #1
	2	Introduction to Motion	1Q - #1
Ŧ	3	Acceleration and Accelerated Motion	1Q - #1
1	4	Motion in Two Dimensions	1Q - #2
Quarter I II III		Force	1Q-Ex
	12	Gases, Liquids, and Solids	1Q-Ex
	5	Newton's Laws of Motion	2Q-#1
II	6	Work and Energy	2Q - #1, #2
11	10	Temperature and Heat	2Q-#2
	19	Electric Charges and Forces	3Q-#1
	20	Electric Fields and Electric Energy	3Q-#1
III	21	Electric Current and Electric Circuits	3Q - #1
	22	Magnetism and Magnetic Fields	3Q-#2
	23	Electromagnetic Induction	3Q-#2
	13	Oscillations and Waves	4Q-#1
	14	Sound	4Q-#1
IV	15	The Properties of Light	4Q-#2
IV	17	Refraction and Lenses	4Q-#2
	18	Interference and Diffraction	4Q-Ex

	itted and in a	moorb and oquationb i	
1		$10^3 10^6 10^9 10^{12} 10^4$	10^3 10^6 10^9 10^{12} 10^4
-	D · 1		thousand million billion trillion ten thousand
2	Decimal	3.45	three point four five
3	Fraction	$\frac{1}{2} \frac{1}{3} \frac{2}{3} \frac{3}{10} 1\frac{1}{2} \frac{3}{4}$	$\frac{1}{2} \text{ a half, one half } \frac{1}{3} \text{ a third, one third } \frac{2}{3} \text{ two thirds } \frac{3}{10}$ three tenths $1\frac{1}{2}$ one and a half $\frac{3}{4}$ three fourths
			• Twelve plus five equals seventeen.
4	Addition	12 + 5 = 17	• Twelve plus five makes seventeen
			• The sum (total) of 12 and 5 is 17.
_	C 1	10 5 5	• 12 minus 5 equals (is) 7.
5	Subtraction	12 - 5 = 7	• Subtract 5 from 12, the answer is (vields) 7.
6		98 - 7 + 2 = ?	• Subtract 7 from 98 and add 2. what is the result?
			• Twenty multiplied by 3 equals 60
7	Multiplication	$20 \ge 3 = 60$	• Twenty times 3 is 60
	manipheation	20 X 0 00	• Multiply 20 by 3 to get 60
			• 20 divided by 2 couple (is makes) 10
8	Division	$20 \div 2 = 10$	$20 \frac{\text{uivited by}}{2} 2 \text{ equals (is, makes) 10.}$
			• 11 divided by 2 gives 7
9		$21 \div 3 = 7$	- 21 divided by 5 gives 7.
10		$\times 2 \times 10$	$\times 2$ two fold, two times, two x, power of two, double
			$\times 10$ ten-fold, ten times, power of ten
11	Root	\sqrt{a} $\sqrt[3]{a}$ $\sqrt[n]{a}$	va va va
			square root of a cube root of a n-th root of a $\frac{1}{2}$
10		2 3 4	x^2 x^3 x^4
12	Exponent	$x^2 x^3 x^4$	x squared x cubed $x \text{ to the fourth}$
-			x (raised) to the fourth (power)
19		x^{-2} $x^{\frac{1}{3}}$	x^{-2} $x^{\frac{1}{3}}$
19			x to the minus two (power) x to the one-third (power)
		0	10^0 10^x
14		10° 10^{x}	ten to the zero nower ten to the r -th (nower)
			The state of the s
15	Rounding	$20 \div 2.2 = 9.09 \rightarrow 9.1$	I wenty divided by two point two is nine point 0 nine, it is
1.0			nine point one when rounding (off).
16	Equations	$\kappa x_i = \int x dm$	k times x sub i equals the integral of x dm.

A. Reading numbers and equations in English

• We increased output <u>by a factor of</u> five.

• If the mass of a weight is doubled in a simple spring, by what factor does the period change?

• <u>By what factor does</u> the kinetic energy of a car <u>change</u> when its speed id tripled?

•

• This rope is <u>three times longer</u> than that one. = This rope is three times as long as that one.

• <u>How many times heavier</u> is an elephant than a mouse?

B. Commo	n Prefixes				
Power	Prefix	Abbreviation	Power	Prefix	Abbreviation
			10-2	centi	с
10 ³	kilo	k	10-3	mili	m
106	mega	М	10-6	micro	μ
10 ⁹	giga	G	10 ⁻⁹	nano	n
1012	tera	Т	10 ⁻¹²	pico	р
1015	peta	Р	10-15	femto	f

C. Geometrical figures

footnotes

6/11/2019

By Tohei Moritani

Population	Mean (%)	Standard deviation	Range	N	-
Beaver Creek ^T	7.31	13.95	0 - 53.16	15	1
Honey Creek ^T	4.33	7.83	0 - 25.47	11	
Cedar Creek ^P	6.56	9.64	0 - 46.52	64	}
Little Dixie Lake ^L	7.96	14.54	0 - 67.66	71	
Whelstone Lake L	7.36	12.93	0 - 63.38	57	_ /

Table 4. Population variation in hatch success (mean percent) of unfertilized eggs for females from populations sampled in 1997. N = number of females tested.

^T = temporary stream, ^P = permanent streams, ^L = lakes.

3.	Units	of	Length,	Mass,	and	Time
----	-------	----	---------	-------	-----	------

[Q2] Length [L]	TABLE 1-1 Typical D	listances								
	Distance from Earth (the Andromeda ga	Distance from Earth to the nearest large galaxy (the Andromeda galaxy M31)								
meter (m)	Diameter of our gala	axy (the Milky Way)		$8 \times 10^{20} \mathrm{m}$						
	Distance from Earth	to the nearest star (othe	er than the Sun)	$4 imes 10^{16}\mathrm{m}$						
}3] Mass [M] logram (kg)	One light-year		,	$9.46 \times 10^{15} \mathrm{m}$						
	Average radius of Pl	luto's orbit		$6 imes 10^{12}\mathrm{m}$						
	Distance from Earth	to the Sun		$1.5 imes 10^{11} \mathrm{m}$						
	Radius of Earth			$6.37 \times 10^6 \mathrm{m}$						
	Length of a football	field		10 ² m						
	Height of a person			2 m						
[Q3] Mass [M]	Diameter of a CD			0.12 m						
	Diameter of the aort	a		0.018 m						
kilogram (kg)	Diameter of a period	d in a sentence		$5 imes 10^{-4}\mathrm{m}$						
kilogram (kg)	Diameter of a red bl	Diameter of a red blood cell								
	Diameter of the hyd	rogen atom		$10^{-10} { m m}$						
[O4] Time [T]	Diameter of a proton	Diameter of a proton								
	© 2010 Presson Educator, Inc. TABLE 1–2 Typical	O 2010 Prevent Education, Inc. TABLE 1–2 Typical Masses								
	Galaxy		Age of the universe	$5 imes 10^{17}\mathrm{s}$						
[Q4] Time [T]	(Milky Way)	$4 imes 10^{41}\mathrm{kg}$	Age of the Earth	$1.3 imes 10^{17} \mathrm{s}$						
	Sun	$2 imes 10^{30}\mathrm{kg}$	Existence of human	12						
$a = a = a = \frac{1}{a} \left(a \right)$	Earth	$5.97 imes10^{24}\mathrm{kg}$	species	$6 \times 10^{13} \mathrm{s}$						
second (s)	Space shuttle	$2 imes 10^6\mathrm{kg}$	Human lifetime	$2 \times 10^{9} \mathrm{s}$						
	Elephant	5400 kg	One year	$3 \times 10^{7} \mathrm{s}$						
	Automobile	1200 kg	One day	$8.6 \times 10^{1} \mathrm{s}$						
	Human	70 kg	lime between	0.8 s						
	Baseball	0.15 kg	Human reaction time	0.0 5						
	Hopeybee	1.5×10^{-4} kg	One cycle of a high-	0.1 5						
	Pad bload call	$1.0 \times 10^{-13} \text{ kg}$	pitched sound wave	$5 imes 10^{-5}\mathrm{s}$						
	Red blood cell	10 Kg	One cycle of an							
	Dacterium	10^{-2} Kg	AM radio wave	$10^{-6} { m s}$						
	Hydrogen atom Electron	$1.67 \times 10^{-31} \text{ kg}$ $9.11 \times 10^{-31} \text{ kg}$	One cycle of a visible light wave	$2\times 10^{-15}s$						
	© 2010 Peerson Education, Inc.		© 2010 Pearson Education, Inc.							

[Q5] A minivan sells for 33,200 dollars. Express the price in kilodollars and megadollars.

[Q6] A typical E.coli bacterium is about 5 micrometers (or microns) in length. Give this length in millimeters and kilometers.

4. Significant Figures (W p24-29)

1. Measurement always includes some **uncertainty**. = Observed values always include some uncertainty. (This is the basic standpoint in science.)

[Rule-1] In a measurement, we must read the digits that are determined by marks of a device and additionally estimate one more digit. The digits are all significant figures.

2. The number of significant figures

[Q2] How many significant figures are there in the following numbers?:

 [Example]
 123
 \cdots It has three significant figures

 (a)
 0.000054
 \cdots

 (b)
 3.001 x 10⁵
 \cdots

 (c)
 2.70
 \cdots

 (d)
 2700
 \cdots

 (e)
 0.002700
 \cdots

[Rule-2] a) All non-zero numbers are significant
b) Zeros between non-zero numbers are significant
c) Leading zeros before a number are not significant.
d) Trailing zeros after a number are uncertain whether they are significant or not unless there's a decimal point.
Compare: 250 250. 250.0 250.00

3. [Rule-3] Scientific notation specifies the number of significant figures

0.0316	\rightarrow
31.60	\rightarrow
316.0	\rightarrow
3160	\rightarrow
2900	\rightarrow
2900.0	\rightarrow
	$\begin{array}{c} 0.0316\\ 31.60\\ 316.0\\ 3160\\ 2900\\ 2900.0\\ \end{array}$

[Q3-2] Write the numbers at the right using scientific notation.

[Q3-3] Find the product of the mass of Earth and the mass of a hydrogen atom.

 $\left[\mathrm{Q3}\text{-}4\right]$ Divide the mass of hydrogen atom by the mass of Earth.

4. [Rule-4] <u>Multiplication and Division</u> --- The quantity with <u>the fewest significant figures</u> in input determines the number of significant figures in the answer.

Example: $\frac{123.45 \times 0.0555}{22.20} = 0.30862500 \rightarrow 0.309$ (Rounding)

5. Rounding (or Rounding-off)

[Q5-1] Round the followings to three significant digits:

- 1) 23.47 \rightarrow 2) 23.429 \rightarrow
- 3) 23.449 →
- 4) 23.451 **→**
- 5) 23.45 **→**
- 6) 23.55 **→**
- 23.450 →
- 8) 23.4501→

[Rule-5] Rounding

- a) Round down if the digit flowing the last significant figure is a 0,1,2,3 or 4.
- b) Round up if the digit flowing the last significant figure is a6,7,8 or 9.
- c) Round <u>up</u> if the digit following the last significant figure is a 5 followed by a nonzero digit. 54.8511 → 54.9 54.8501 → 54.9
- d) Round <u>down</u> if the last significant figure is an <u>even</u> number and the next digit is a 5, with no other nonzero digits.
 54.85 → 54.8 54.85000 → 54.8
- e) Round <u>up</u> if the last significant figure is an <u>odd</u> number and the next digit is a 5, with no other nonzero digits. $54.75 \rightarrow 54.8$ $54.75000 \rightarrow 54.8$

[Q5-2] Find the number of significant figures of the following quantities:

- a) 5 h 23 min
- b) 1 h 23 min
- c) 1 h 23 min 11 s
- d) 3 h 23 min 11 s
- e) 5'5"

[5-3] Find the solutions:

- a) 5.0 m x 5.0 m =
- b) 5 m x 5 m =
- c) 5 students x 5 biscuits/student =

6. [Rule-6] <u>Addition and Subtraction</u> --- The result is limited by the number with the largest uncertain decimal position in input.

[Q6-1]

Example:

 $123.4500 \\
12.20' \\
+) 0.0063 \\
135.6563 \rightarrow 135.66 \\
6' \\
6' \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
135.666 \\
13$

17.3 0.039 5.361)0.48 +)2.66 -)2.5

[Q6-2] A parking lot is 144m long and 47.66 m wide. What are the area and the perimeter of the lot?

7. Rounding Errors (Round-off Errors) – How to avoid them?
[Q7-1] A cow walks 3 km in 4 hours.
(a) What is the average speed of the cow?

(a) what is the average speed of the cow

(b) How far does it walk for 12 hours?

 $[\mathrm{Q7}\mathchar`2]$ Find the circumference of a circle with a radius of $4.10~\mathrm{cm}$

[Rule-7] **Keep at least one extra digit** throughout your calculations to avoid "rounding error"

6. Converting Units (W p20-21)

[Q16] If you walk at 3.00 mi/h, how fast is that in m/s? (Conversion factor: 1 mi = 1.609 km)

By Tohei Moritani

II. Speed and Velocity

1. Average Speed and Instantaneous Speed

Average Speed = $\frac{\text{distance}}{\text{elapsed time}}$ [m/s] [km/h] (1)

[Q1a] Shinkansen super express Nozomi#9 departs at 7:10 am Tokyo and arrives at 12:29 at Hakata. The distance between Tokyo and Hakata is 1069.1 km. What is the average speed km/h?

[Q1b] In the above question, what is the significant figure for solution?

[Q2] In Q1, what is the average speed in m/s?

[Q3] You are driving at a constant **instantaneous speed** of km/h. How far do you drive for 15 minutes?

 $[\rm Q4]$ A car on a highway travels from A position to B position travels in 2.0 h at an average speed of 80 km/h. After that the travels from B position to C position in 1.5 h at an average speed of 60 km/h.

(a) What is the distance from A position to C position.(b) What is the average speed between A position to C position.

at

in

2. Displacement and Velocity (W p42-53)

$Displacement \equiv Change in position = \Delta x \equiv x' - x \qquad (2)$	[05]
Average Velocity = $v_{av} \equiv \frac{\Delta x}{\Delta t} = \frac{x' - x}{t' - t}$ (3)	You
	leav

e your house, drive to the grocery store and then to your friend's house. What is the **<u>distance</u>** you've covered in your trip?

[Q6] In the above trip, what is the **<u>displacement</u>**, ΔX when the origin O and the x coordinate are defined as shown the figure?

53)

[Q6'] In the above question, what is the **displacement**, ΔX when the origin O is defined at the grocery store?

[Q7] In the figure shown, a car moves from Q to P in 10 seconds, where Q and P are 93m and 30m far from the origin, respectively. What is the average **speed** of the car?

[Q8] The origin O and the x coordinate are defined as shown in the figure. If a car travels from Q to P in 10 seconds, what is the **average velocity**, $\Delta x / \Delta t$, of the car.

[Q9] If a boy runs 212 m west in 55.2 s, and then 288 east in 76.8 s, what is his average speed? What is his average velocity?

*[Q10] An object that is placed at $\mathcal{X}_1 = -10$ m on the \mathcal{X} axis moves to point $\mathcal{X}_2 = 11$ m after 3.0 seconds. Find the average velocity during the movement.

3. Average Velocity and x-versus-t Graph (W 54-57)

[Mini-Lab #1] Motion Detector

Experimental condition Rate: 2.5 samples/s Interval: 0.4 s/sample Duration: 5 s [Q11] The figure shown below visualizes a particle's motion by sketching its position as a function of time. In this case the particle moves in the positive \mathcal{X} direction for 2 s, then reverses direction. Replot the same information with an \mathcal{X} -versus-t graph where the vertical and horizontal axes represent the position, \mathcal{X} , and time, t.

[Q13] In the above \mathcal{X} -versus-t graph, draw a straight line connecting t=0 s and the position t=4 s. What is the meaning of the slope? Do the same thing for the above (b) and (c).

4. Instantaneous Velocity

[Q14] Fig. 14 shows the motion of a particle as the relation between the particle's position and time, with the corresponding numerical values of \mathcal{X} and t given in Table 14. Find the average velocities, $\mathcal{V}_{av} = \Delta \mathcal{X} / \Delta t$, between the initial time, t_i , and the final time, t_f , in Table 14' and .

velocity is defined as $v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t}$. Based on this definition, find the instantaneous velocity at t = 1 s in Fig. 14 from the calculation results of Table 14'. (The slope of the tangent line at a time on an \mathcal{X} -versus-t graph corresponds to

the instantaneous velocity at the time.)

Instantaneous Velocity =
$$v \equiv \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t}$$
 (4)

- [Q16] Fig. 16 shows an X-versus-t graph of the motion of an that moves from O to P.
- (a) In which interval does the object decrease its velocity gradually?
- (b) In which interval does the object move at a constant velocity?

IV. Constant Velocity 1-D Motion (W 58~62)

Constant Velocity Motion x = vt (7)

#2] Constant Speed Vehicle

[Q31] Fig. 31 shows a model car called "Constant Speed Vehicle." Its speed is 0.31 m/s. Draw two graphs expressing its motion for 15 seconds, \mathcal{X} -versus-t graph and \mathcal{V} -versus-t graph.

[Q32] Table shows a list of examples of speed shown by various matters.

	Speed
Growing of Hair	Approximately 15 cm/y
Moving of a Snail	Approximately 1.4 mm/s
Waking of a Man	Approximately 1.0 m/s
Flying of a Bee	5 m/s
Falling of a Sky Diver	55 m/s (200 km/h)
JR Super Express (Maximum)	93 m/s (336 km/h)
Propagation of Sound	340 m/s
Average Moving of a Oxygen Molecule (0°C)	460 m/s
Rotation of the Earth (Equator)	465 m/s
Revolution of the Earth	30 km/s
Speed of Light (in Vacuum)	$3.0 \ge 10^8 \text{ m/s}$

6/11/2019

V. <u>Acceleration</u> (W p72~81)

[Mini-Lab #3, Lab] Inclined Track and Spark Timer

Spark timer

 $[\rm Q33]$ Saab advertises a car that goes from 0 to 100 km/h in 6.5 s. What is the average acceleration of this car?

[Q34] An airplane has an average acceleration of 5.6 m/s² during takeoff. How long does it take for the airplane to reach a speed of 240 km/h?

[Q35] A body moving at 10 m/s to the right begins to accelerate at a constant acceleration rate and then shows a speed of 16 m/s to the same direction in 2.0 s. What is the acceleration rate during this period?

[Q36] Initially a body is moving at 10 m/s to the east. After 10 s, it shows a speed of 5.0 m/s in 10 period?

[Q37] Figs. a to d show four cars with the directions of velocity, v, and acceleration, a. Which car's speed increases or decreases?

VI. Motion with Constant Acceleration (W p82~96)

Motion with Constant Acceleration $v = v_0 + at$ (10) $x = v_0 t + \frac{1}{2} a t^2$ (11) $v^2 - v_0^2 = 2 a x$ (12)

[Q42] A car is running at a constant acceleration of 1.0 $\rm m/s^2$ in one dimension. The car passes a point P at a speed of 2.0 m/s.

- (a) How long does it take when the speed of the car reaches 5.0 m/s?
- (b) How many meters does the car run in 4.0 s after it passes the point P?
- (c) How many meters does the car run when its speed reaches 12 m/s?

 $[\rm Q43]$ A boy rides a bike at 10 m/s and then put on the brake. The stopping with a constant acceleration 1-D motion. The acceleration 2.0 m/s² backward.

- (a) How long does it take for the bike to stop after braking?
- (b) How many meters does it move after braking?
- (c) When the sharpness of the brake is changed, the bike moves 50 stop. What is the acceleration rate?

bike is rate is

m to

 m/s^2

[Q44] When a jumbo jet takes off, it runs at an acceleration rate of 2.0 and floats up off the runway at a speed of 80 m/s in case of a windless condition.

- (a) How long does it take to float up off the runway after starting?
- (b) How many meters does the jet run on the runway?

n with a Spark Timer

1	Objectives	 Record the movement of a Dynamics Cart descending on a slope to obtain the acceleration. Investigate the relations between acceleration and mass
2	Hypothesis	The movement of a cart is constant-acceleration motion.
3	Safety	Do not drop a cart on your foot.
Prepar	ation 準備	

Spark Timer Dynamic Cart, Weights (250 g each), Track, Scale Wood board, Cramp, Extension code Type-A Type-B Experiments 実験 Spark Timer Measuremens 1. The mass of a Dynamic Cart 2. The height(h) and length(L) of the track to obtain the angle Thermal Recording Tape of the track θ $tan \theta = b/L$ Dymamic Cart h Weight Spark Timer Track • Frequency: 60 Hz L • On-Off: Switch Off- \rightarrow On just before the measurement Measurements should be performed in 2 angles and 2 kinds of mass. Total 4 measurements. $\Delta x/0.1s$ (cm) 1.75 3.23 4.71 6.191.75 Displacement x (cm) 0 4.98 9.69 15.88 į : : : : : : : : : : : : : 0.2 0.3 Time(s) 0 0.1 0.4 s Average (s) 0.05 0.15 0.25 0.35 Dots are printed every 1/60 s. Decide a start point. Make marks every 6 dots: the time of 6 dots corresponds to 0.100

Dots are printed every 1/60 s. Decide a start point. Make marks every 6 dots, the time of 6 dots corresponds to 0.100 s (1/60 s x 6 = 0.100 s), and the length corresponds to the displacement Δx per 0.100 s, namely the velocity $\Delta x / \Delta t$ (m/0.100 s)

Cut at the marked places and put the pieces on graph paper.

 $\begin{array}{c} 20 \\ ext{Keio} \ ext{Academy of New York} \end{array}$

11^{th} Physics 1 Motion 2019-2020

Example																						
Time t		s	0	0.10) (0.20	0.30) (0.40	0.	50	0.6	30	0.70	0.8	30	0.9	0	1.0	1	.1	1.2
Displacement $x = x 10^{-2} m$		0	2.35	5 6	3.25	11.6	5 1	8.60	27	.15	37.	24	48.85	61.9	95	76.6	35					
Displacement/0.1	$s \Delta x$	$x10^{\cdot 2}m$		2.35	3.90) 5	5.40	6.95	8	3.55	10	.09	11.0	61 13	3.10	14	.70					
Average Velocity	υ	$x10^{-2} m/s$		23.5	39.0) 5	54.0	69.5	8	35.5	10	0.9	116	5.1 13	31.0	14	7.0					
Average Accelera	tion a	m/s^2		1.5	5	1.50	1.55		1.60	1.	.54	1.	52	1.50	1.0	60						
Central Time	t	s		0.05	0.15	5 (0.25	0.35	0	0.45	0.	55	0.6	5 0	.75	0.	.85	0.9	95	1.05	1.	15
Experime	ent – 1	(Angle:		0		Μ	ass:			kg)							<u> </u>	-				
Time t		s	0	0.1	0 ().20	0.30	0.4	40	0.50	0.	60	0.70	0.8	0 0	0.90	1.	.0	1.1		1.2	1.3
Displacement x	Σ	κ10 ⁻² m	0			-															1	
Displacement/0.1	s Δx	x10 ⁻² m				_															_	
Average Velocity	υ	x10 ⁻² m/s			-																	
Average Accelera	tion	a m/s ²				_										_					-	
Central Time	t	s		0.05	0.15	0.	.25	0.35	0.45	5 ().55	0.6	35	0.75	0.85	C	.95	1.0)5	1.15	1	25
Function	ont 9	(Angle:		0		м				ka)												
Time t	ent – 2	(Aligie:	0	0.1	0 0) 20	0.30	0.4	10	<u>к</u> д/ 0.50	0	60	0.70	0.8	0 0	90	1	0	11		12	13
Displacement x	,	x10 ⁻² m	0	0.1		0.20	0.50	0.4	10	0.00	0.	00	0.70	, 0.0			1.	.0	1.1	-		1.0
Displacement/0.1 s. Λr x10 ² m																						
Average Velocity	υ	x10 ⁻² m/s																				
Average Accelera	tion	a m/s ²																				
Central Time	t	s		0.05	0.15	0.	.25).35	0.43	5 ().55	0.6	35	0.75	0.85	C	.95	1.0	05	1.15	1	25
										-											-I	
Experime	ent – 3	(Angle:		0		Μ	ass:			kg)												
Time t		s	0	0.1	10	0.20	0.3	0 0	.40	0.5	0 0	0.60	0.7	0 0.	80	0.9) 1	1.0	1.	1	1.2	1.3
Displacement x	2	к10 ⁻² т	0																			
Displacement/0.1	s Δx	$x10^{\cdot 2}m$																				
Average Velocity	υ	$x10^{-2} \text{ m/s}$																				
Average Accelera	tion	a m/s ²																				
Central Time	t	s		0.05	0.1	5	0.25	0.35	0.	45	0.55	6 0	0.65	0.75	0.8	5	0.95	1	.05	1.1	5	1.25
Fynorim	ont 1	(Anglo:		0		м				ka)												
Time t	- 4	s	0	0 1	10	0.20	0.3	0 0	40	0.5	0 0	0 60	0.7	0 0	80	0.90) 1	1 0	1	1	12	1.3
Displacement x	2	x10 ⁻² m	0		-	0			-		\neg				-							
Displacement/0.1	s Δx	x10 ⁻² m			1			1			I		<u>'</u>	1			- 1					
Average Velocity	υ	x10 ⁻² m/s			1				1							\uparrow		+				
Average Accelera	tion	a m/s ²							<u> </u>	1		- 1							Τ			
Central Time	t	s		0.05	0.1	5	0.25	0.35	0.4	45	0.55	6 0).65	0.75	0.8	5	0.95	1	.05	1.1	5	1.25
					1										1							

Lab Report

- 1. Report Cover --- Use "Laboratory Report Cover for #1 Lab", Write in script.
- 2. Data copy of the thermosensitive tape on graph sheets.
- 3. Tables
- 4. Figure --- x- t graph
- 5. Figure v t graph Obtain acceleration $a = \Delta v / \Delta t$ from the slope of v-t graph.
- 6. Table --- Summary of Results (Conditions --- Acceleration observed)
- 7. Discussion and Opinions

Galileo's Thought Experiment

 Galileo's Hypothesis: All objects fall at the same rate in the absence of air resistance

[Mini-Lab #8~10] Motion Detector

1. <u>Free Falling</u> (No Air Resistance)

Motion with Constant Acceleration	
$v = v_0 + a t$	(10)
$x = v_0 t + \frac{1}{2} a t^2$	(11)
$v^2 - v_0^2 = 2 a x$	(12)
Free Falling (+: downward)	
v = g t	(13)
$y = \frac{1}{2} g t^2$	(14)
$v^2 = 2g y$	(15)
Vertical Throw-Up (+: upward)	
$v = v_0 - g_t$	(16)
$y = v_0 t - \frac{1}{2} g t^2$	(17)
$v^2 - v_0^2 = -2 g y$	(18)
Vertical Throw-Down (+: downward)	
$v = v_0 + g t$	(19)
$y = v_0 t + \frac{1}{2} g t^2$	(20)
$v^2 - v_0^2 = 2 gy$	(21)

Use 9.80 m/s² as the gravitational acceleration rate in the following problems.

[Mini-Lab #11]

[Q57] A student B at the left holds a ruler and another student A at right keeps his/her fingers open. B suddenly falls the ruler freely then A catches it. The location of the ruler A catches is 20 cm lower than the original position. What is A's reaction time?

the and

[Q58]You dropped a stone freely from the bridge.

- (1) Find the direction and magnitude of the stone's velocity 1.0 second later.
- (2) How far does it fall during 1.0 second?
- (3) You saw a splash 1.8 seconds after you had dropped the stone. Find the distance between the bridge and the water surface.

2. Vertical Throwing-Up

[Q59] You threw up a small ball vertically from the top of a building with a height of 88.2 m at an initial speed of 14.7 m/s.

- (a) How long does it take until the ball reached the highest point?(b) Find the distance between the highest point and the top of the building.
- (c) How long does the ball take to hit the ground?
- (d) Find the speed just before hitting the ground.

[Q60] The world's highest fountain of water is located in Fountain Hills, Arizona. The fountain rises to a height of 560 ft or 171 m. What is the initial speed of the water? (b) How long does it take water to reach the top of the fountain?

3. Vertical Throwing-Down

[Q61] A boy throws a stone down into a well that is 8.63 m deep sees the splash after 1.20 s. What is the initial speed?

and

VIII. Projectile Motion – Zero Launch Angle

[Mini-Lab #12] Using the apparatus as shown two coins are let start at same time: one falls freely and vertically and the other is shot horizontally. Which coin hit the ground faster?

(W p131~136)

28 Keio Academy of New York

By Tohei Moritani

[Mini-Lab #13] Trajectory Apparatus

[Galileo's Hypothesis] A projectile motion can be broken down into two components: A Horizontal Motion and a Vertical Motion.

[Mini-Lab #14] Fork Ball

[Q73] A pitcher throws a ball horizontally at a speed of 135 km/h. Assuming that the effect of air is negligible, draw the trajectory how the ball travels.

Horizontal distance	<i>X</i> [m]	0	3	6	9	12	15	18
Time	<i>t</i> [s]							
Vertical distance	<i>y</i> [m]							

[Q74] Compare your result with Robert Coello's forkball pitch.

11th Physics 1 Motion 2019-2020

- [Q74] A bullet is fired horizontally from a height of h [m] at a speed of v_0 [m/s].
- (a) Find the acceleration rates, velocities and displacements of the bullet in terms components as functions of time.
- (b) How far does the bullet travel horizontally from the bottom of the building and the place the bullet hit the ground assuming b = 33.8 m, $v_0 = 400$ m/s (4.00 x 10^2 m/s) and the ground is flat?

Fig.74

IX. Projectile Motion – General Launch Angle

Projectile Motion - General Launch Angle	,			
$v_x = v_{ox} = v_o \cos \theta$,	$x = v_{0x}t$	(5)		
$v_{y} = v_{oy} - gt,$	$y = v_{0y}t - \frac{1}{2}gt^2$		(6)	Upward: positive

[Mini-Lab #15] Projectile Launcher

[Q74] A golfer tees off on level ground, giving the ball an initial speed of v_0 [m/s] and an initial direction of θ [°] above the horizontal.

(a) Find the acceleration rates, velocities and displacements of the ball in terms of components as functions of time.

Answer the following questions supposing $v_0 = 52.7$ m/s and $\theta = 42.5^{\circ}$.

- (b) What are the horizontal and vertical components of the initial speed?
- (c) How long does the ball take to reach the highest point?
- (d) What is the maximum height of the projectile from the ground? The ground is assumed to be flat.
- (e) How long does it travel before it hit the ground?
- (f) How far does it travel before it hit the ground?
- (g) What is the speed of the ball just before it hits the ground?

[Q75] A golfer tees off at an initial speed of 38.3 m/s and at an angle of 43.5° above the horizontal from a height of 10.0 m.

(a) What are the horizontal and vertical components of the initial speed?

(b) How long does the ball take to reach the highest point?

(c) What is the maximum height of the projectile from the ground? The ground is assumed to be flat.

(h) What is the speed of the ball just before it hits the ground?

11^{th} Physics 1 Motion 2019-2020

[Q22] A batter hit a ball giving the ball an initial speed of 135 km/h and an initial direction of 45° above the horizontal. Assuming that the effect of air is negligible, draw the trajectory how the ball travels.

Horizontal distance	<i>X</i> [m]	0	20	40	60	80	100	120
Time	<i>t</i> [s]							
Vertical distance	<i>y</i> [m]							

[Mini-Lab #16] The Monkey and the Hunter

A hunter fires a dart gun with a harmless sedative at a monkey hanging from a vine a distance h vertically above the dart gun and a distance R horizontally away from the dart gun. The hunter aims directly at the monkey and fires, but just as the hunter fires, the monkey, using its incredible spider-monkey sense, realizes what's up and drops from the vine. Does the monkey avoid the dart?

III. Combining Velocity, Relative Velocity, Relativity of Velocity 1. Combining Velocity (W p127)

Combining velocity (1D):	<i>v</i> =	$v_1 + v_2$	(5)
- ·			

[Mini-Lab #17] Running Cart on a Moving Walkway

[Q22] There is a moving walkway that has a speed of 2.2 m/s relative to the ground. You walk at a speed of 1.3 m/s when walking on the ground. What is your velocity relative to the ground assume that you walk with the same speed on the walkway as you do on the ground?

[Q23-a] An up escalator is moving at a speed of 0.50 m/s. A person is walking upwards on the steps of the escalator at 1.2 m/s. What is the velocity of the person when another person standing on the ground observes?

[Q23-b] A down escalator is moving at a speed of 0.50 m/s. A person is walking upwards on the steps of the escalator at 1.2 m/s. What is the velocity of the person when another person standing on the ground observes?

[Q24] There is a boat whose speed relative to the water is 5.0 m/s. When the boat runs upstream on a river flowing at 2.0 m/s, what is the velocity of the boat relative to the ground?

[Q25] In the previous question, what is the velocity of the boat relative to the ground if the boat runs downstream?

2. <u>Relative Velocity</u>

[Q1 8] \vec{v}_{AB} : The velocity of A relative to B

(The velocity of A observed by B)

Relative Velocity (1D)
$$\vec{v}_{AB} = v_A - v_B$$

Two cars, A and B, are running both to the right direction. A car, A, runs at a speed of 10 m/s whereas B does 15 m/s. (a) What is the relative velocity of the car B observed by the passenger of the car A? (b) What is the relative velocity of the car A observed by the passenger of the car B?

[Q19] In the previous question, the car B runs to the left at 15 m/s. What is the relative velocity of the car B observed by the passenger of the car A?

Fig 20

[Q44] When a jumbo jet takes off, it runs at an acceleration rate of 2.0 m/s² and floats up off the runway at a speed of 80 m/s in case of a windless condition.

(c) How long does it take to float up off the runway after starting?

(d) How many meters does the jet run on the runway?

In case of a windy condition, a jet floats up when its relative velocity to the air reaches 80 m/s. Answer the following questions supposing that a jet is running toward windward in wind blowing at 10 m/s.

- (e) What is the speed of the jet relative to the ground when the jet floats up?
- (f) How many meters does the jet run on the runway?

IV. Vectors and Components

(W p113~126)

[Q1] Find A_x and A_y for the vector \vec{A} with magnitude and direction given by A = 3.5 m and $\theta = 66^{\circ}$, respectively.

[Q2] Find B and θ for the vector \vec{B} with components Bx = 75.5 m and By = 6.20 m.

[Q3] In Fig. Q3, find C and θ for the vector \vec{C} where $\vec{C} = \vec{A} + \vec{B}$.

Combining velocity (2D) (W p128~130)

"The velocity of A re Combing Velocity	v = v	$ \begin{array}{c} {}^{\mathrm{B:}} \vec{v}_{AB} \\ v_1 + v_2 \end{array} $	\rightarrow	\vec{v}_{BG} =	\vec{v}_{BW} +	\vec{v}_{WG}
$ec{ec{v}}_{BG}$: $ec{ec{v}}_{BW}$: $ec{ec{v}}_{:WG}$:	The velo The velo The velo	ocity of a boat m ocity of a boat m ocity of water m	relative t relative t relative t	o the ground o water o the ground		

[Q26] You swim at 1.2 m/s relative to water.

Now you point at the right angle to the bank on a river flowing 0.90 m/s. The width of the river is 72 m.

- (a) What is your speed relative to the ground?
- (b) How long does it take to cross the river to the other side?
- (c) What is the distance between the point R you arrive at and the opposite point Q?

This time you want to cross the river to the opposite point Q.

- (d) What angle Φ should you take?
- (e) What is your speed relative to the ground?
- (f)

Relative Velocity (2D)

$$v_{AB} = v_A - v_B$$
 $\vec{v}_{AB} = \vec{v}_{AG} + \vec{v}_{GB} = \vec{v}_{AG} - \vec{v}_{BG}$

[Q29] On a calm lake a motorboat A is moving due east at a speed of 10 m/s. Another motorboat B is passing in front of A at a speed of 10 m/s. How does the passenger on the motorboat A experience the velocity of B?

3. <u>Relativity of Velocity</u> [Mini-Lab #18] "Train"

汽車(きしゃ) 汽車 ポッポ ポッポ シュッポ シュッポ シュッポッポ 僕等(ぼくら)をのせて シュッポ シュッポ シュッポッポ スピード スピード 窓(まど)の外 畑(はたけ)も とぶ とぶ 家もとぶ 走れ 走れ 鉄橋(てっきょう)だ 鉄橋だ たのしいな

"The velocity of A relative to B":
$$\vec{v}_{AB}$$

Combining Velocity $\vec{v}_{GA} = \vec{v}_{GB} + \vec{v}_{BA}$ $\vec{v} = \vec{v}_1 + \vec{v}_2$ (5)
Relativity of Velocity $\vec{v}_{GA} = -\vec{v}_{AG}$ (6)
Relative Velocity $\vec{v}_{AB} = \vec{v}_{AG} + \vec{v}_{GB}$
 $= \vec{v}_{AG} - \vec{v}_{BG} = v_A - v_B$ (7)

Trigonometric Function Table

角	正弦 (sin)	余弦 (cos)	正接 (tan)	角	正弦 (sin)	余弦 (cos)	正接 (tan)									
0.0°	0.0000	1.0000	0.0000	22.5°	0.3827	0.9239	0.4142	1	角	正弦 (sin)	余弦 (cos)	正接 (tan)	角	正弦 (sin)	余弦 (cos)	正接 (tan)
0.5°	0.0087	1.0000	0.0087	23.0°	0.3907	0.9205	0.4245		45.0°	0.7071	0.7071	1.0000	67.5°	0.9239	0.3827	2.4142
1.0°	0.0175	0.9998	0.0175	23.5°	0.3987	0.9171	0.4348		45.5°	0.7133	0.7009	1.0176	68.0°	0.9272	0.3746	2.4751
1.5°	0.0262	0.9997	0.0262	24.0°	0.4067	0.9135	0.4452		46.0°	0.7193	0.6947	1.0355	68.5°	0.9304	0.3665	2.5386
2.0°	0.0349	0.9994	0.0349	24.5°	0.4147	0.9100	0.4557		46.5°	0.7254	0.6884	1.0538	69.0°	0.9336	0.3584	2.6051
2.5°	0.0436	0.9990	0.0437	25.0°	0.4226	0.9063	0.4663		47.0°	0.7314	0.6820	1.0724	69.5°	0.9367	0.3502	2.6746
3.00	0.0523	0.9986	0.0524	25.5°	0.4305	0.0026	0.4770		47.5°	0.7373	0.6756	1.0913	70.0°	0.9397	0.3420	2.7475
3.5°	0.0610	0.9981	0.0612	26.0°	0.4384	0.8988	0.4877		18.00	0.7421	0.6601	1 1106	70.50	0.0426	0 2220	0.0020
4.0°	0.0698	0.9976	0.0699	26.5°	0.4462	0.8949	0.4986		48.0	0.7431	0.0091	1.1100	70.5	0.9426	0.3338	2.8239
4.5°	0.0785	0.9969	0.0787	27.0°	0.4540	0.8910	0.5095		40.0	0.7490	0.6626	1.1503	71.50	0.9455	0.3230	2.9042
5.0°	0.0872	0.9962	0.0875	27.5°	0.4617	0.8870	0.5206		49.0	0.7604	0.6301	1.1304	72.0°	0.9483	0.3113	2.9887
	0.0079	0.0054	0.0062	20.00	0.4605	0.0000	0 5217		50.0°	0.7660	0.6428	1.1918	72.5°	0.9537	0.3007	3.1716
0.0	0.0958	0.9954	0.0963	28.0	0.4095	0.8829	0.5317		00.0	0.1000	0.0120	1.1010	12.0	0.0001	0.0001	0.1110
0.0	0.1045	0.9945	0.1051	28.5	0.4772	0.8788	0.5430		50.5°	0.7716	0.6361	1.2131	73.0°	0.9563	0.2924	3.2709
0.0	0.1132	0.9936	0.1139	29.0	0.4848	0.8746	0.5545		51.0°	0.7771	0.6293	1.2349	73.5°	0.9588	0.2840	3.3759
7.50	0.1219	0.9925	0.1220	29.0	0.4924	0.8704	0.5058		51.5°	0.7826	0.6225	1.2572	74.0°	0.9613	0.2756	3.4874
1.0	0.1505	0.9914	0.1517	30.0	0.5000	0.8000	0.5774		52.0°	0.7880	0.6157	1.2799	74.5°	0.9636	0.2672	3.6059
8.0°	0.1392	0.9903	0.1405	30.5°	0.5075	0.8616	0.5890		52.5°	0.7934	0.6088	1.3032	75.0°	0.9659	0.2588	3.7321
8.5°	0.1478	0.9890	0.1495	31.0°	0.5150	0.8572	0.6009		53.0°	0.7986	0.6018	1.3270	75.5°	0.9681	0.2504	3.8667
9.0°	0.1564	0.9877	0.1584	31.5°	0.5225	0.8526	0.6128		53.5°	0.8039	0.5948	1.3514	76.0°	0.9703	0.2419	4.0108
9.5°	0.1650	0.9863	0.1673	32.0°	0.5299	0.8480	0.6249		54.0°	0.8090	0.5878	1.3764	76.5°	0.9724	0.2334	4.1653
10.0°	0.1736	0.9848	0.1763	32.5°	0.5373	0.8434	0.6371		54.5°	0.8141	0.5807	1.4019	77.0°	0.9744	0.2250	4.3315
10.5°	0.1822	0.9833	0.1853	33.0°	0.5446	0.8387	0.6494		55.0°	0.8192	0.5736	1.4281	77.5°	0.9763	0.2164	4.5107
11.0°	0.1908	0.9816	0.1944	33.5°	0.5519	0.8339	0.6619		EE EO	0.8941	0 5664	1.4550	78.00	0.0781	0.2070	4 7046
11.5°	0.1994	0.9799	0.2035	34.0°	0.5592	0.8290	0.6745		56.00	0.8241	0.5004	1.4550	79.50	0.9781	0.2079	4.7040
12.0°	0.2079	0.9781	0.2126	34.5°	0.5664	0.8241	0.6873		56.5°	0.8230	0.5510	1.4820	79.00	0.9759	0.1994	4.9152
12.5°	0.2164	0.9763	0.2217	35.0°	0.5736	0.8192	0.7002		57.0°	0.8355	0.5315	1.5300	70.5°	0.9810	0.1822	5 3055
10.00	0.0070	0.0744	0.0000	07.70	0.5005	0.01.11	0.7100		57.5°	0.8434	0.5373	1.5595	80.0°	0.9848	0.1322	5.6713
13.0	0.2250	0.9744	0.2309	35.5	0.5807	0.8141	0.7133		01.0	0.0404	0.0010	1.0057	00.0	0.5040	0.1100	0.0110
13.5	0.2334	0.9724	0.2401	36.0	0.5878	0.8090	0.7265		58.0°	0.8480	0.5299	1.6003	80.5°	0.9863	0.1650	5.9758
14.0	0.2419	0.9705	0.2495	30.5 27.0°	0.3948	0.8039	0.7400		58.5°	0.8526	0.5225	1.6319	81.0°	0.9877	0.1564	6.3138
14.0 15.0°	0.2504	0.9081	0.2580	37.0	0.6088	0.7980	0.7550		59.0°	0.8572	0.5150	1.6643	81.5°	0.9890	0.1478	6.6912
15.0	0.2588	0.9659	0.2079	31.5	0.0088	0.7954	0.1613		59.5°	0.8616	0.5075	1.6977	82.0°	0.9903	0.1392	7.1154
15.5°	0.2672	0.9636	0.2773	38.0°	0.6157	0.7880	0.7813		60.0°	0.8660	0.5000	1.7321	82.5	0.9914	0.1305	7.5958
16.0°	0.2756	0.9613	0.2867	38.5°	0.6225	0.7826	0.7954		60.5°	0.8704	0.4924	1.7675	83.0°	0.9925	0.1219	8.1443
16.5°	0.2840	0.9588	0.2962	39.0°	0.6293	0.7771	0.8098		61.0°	0.8746	0.4848	1.8040	83.5°	0.9936	0.1132	8.7769
17.0°	0.2924	0.9563	0.3057	39.5°	0.6361	0.7716	0.8243		61.5°	0.8788	0.4772	1.8418	84.0°	0.9945	0.1045	9.5144
17.5°	0.3007	0.9537	0.3153	40.0°	0.6428	0.7660	0.8391		62.0°	0.8829	0.4695	1.8807	84.5°	0.9954	0.0958	10.385
18.0°	0.3090	0.9511	0.3249	40.5°	0.6494	0.7604	0.8541		62.5°	0.8870	0.4617	1.9210	85.0°	0.9962	0.0872	11.430
18.5°	0.3173	0.9483	0.3346	41.0°	0.6561	0.7547	0.8693		63.0°	0.8910	0.4540	1 9626	85.5°	0.9969	0.0785	12 706
19.0°	0.3256	0.9455	0.3443	41.5°	0.6626	0.7490	0.8847		63.5°	0.8949	0.4462	2.0057	00.0°	0.9976	0.0698	14 301
19.5°	0.3338	0.9426	0.3541	42.0°	0.6691	0.7431	0.9004		64.0°	0.8988	0.4384	2.0503	86.5°	0.9981	0.0610	16 350
20.0°	0.3420	0.9397	0.3640	42.5°	0.6756	0.7373	0.9163		64.5°	0.9026	0.4305	2.0965	87.0°	0.9986	0.0523	19.081
20.50	0.3509	0.0267	0.3720	42.00	0.6820	0.7214	0.0225		65.0°	0.9063	0.4226	2.1445	87.5°	0.9990	0.0436	22.904
20.5	0.3584	0.9307	0.3139	43.0 43.5°	0.6884	0.7314	0.9525			0.000				0.000	0.0010	
21.0	0.3665	0.9304	0.3039	44.0°	0.6047	0.7204	0.9450		65.5	0.9100	0.4147	2.1943	88.0°	0.9994	0.0349	28.636
22.00	0.3003	0.9304	0.3535	44.5°	0.0347	0.7133	0.9037		66.0°	0.9135	0.4067	2.2460	88.5°	0.9997	0.0262	38.188
22.5°	0.3827	0.9230	0.4142	45.0°	0.7071	0.7071	1 0000		66.5	0.9171	0.3987	2.2998	89.0	0.9998	0.0175	57.290
22.0	0.0021	0.9209	0.4142	40.0	0.1011	0.1011	1.0000	J	67.0	0.9205	0.3907	2.3559	89.5	1.0000	0.0087	114.59
									67.5°	0.9239	0.3827	2.4142	90.0°	1.0000	0.0000	

Sauare and Root

n	n^2	\sqrt{n}
1	1	1.0000
2	4	1.4142
3	9	1.7321
4	16	2.0000
5	25	2.2361
6	36	2.4495
7	49	2.6458
8	64	2.8284
9	81	3.0000
10	100	3.1623