11th Physics (2017 – 18)

(2ndQ, #1Mini Test)

Class	No. Na	ame
-------	--------	-----

In calculation problems, describe equations clearly and systematically enough to show how to solve the problems.

The circular constant $\pi = 3.14159...$

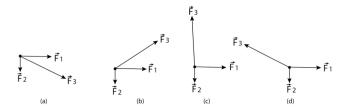
Conversion from atmosphere to pascal $1.000 \text{ atm} = 1.013 \text{ x } 10^5 \text{ Pa}$

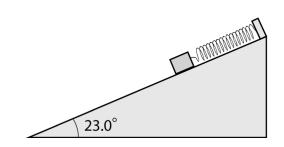
Gravitational acceleration rate $g = 9.80 \text{ m/s}^2$

Universal Gravitational Constant $G = 6.67 \times 10^{\text{-}11} \, \text{N} \cdot \text{m}^2/\text{kg}^2$

Mass of the Earth $$M_{\rm E}$$ = $\,5.97\,x\,10^{24}\,$ kg

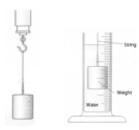
The Density of Fresh Water $1,000 \text{ kg/m}^3$ The Density of Sea Water $1,025 \text{ kg/m}^3$ The Density of Ice 917 kg/m^3


The Density of Air 1.29 kg/m^3 The Density of Helium 0.179 kg/m^3


4 pt/question x 13 questions = 52 pt Max 50 pt

/[Total 50 pt]

(1) The figure shows three forces, \vec{F}_1 , \vec{F}_2 and \vec{F}_3 where the direction of \vec{F}_3 is different in (a), (b), (c) and (d). Which has the largest in magnitude for the resultant force of the three forces?



- (1) Answer
- (2,3) A body with a mass of 3.50 kg is on a frictionless slope and is supported by a spring as shown in the figure.
- (2) Determine the names and magnitude of the forces
- (3) The spring shows an elongation of 17.5 cm from its original length. What is the spring constant of this spring? Equations

- (2) Answer
- (3) Answer

- (4,5) A weight is attached to a spring scale. When the weight is suspended in air, the scale reads 24.0 N; when it is completely immersed in water, the scale reads 19.9 N.
- (4) What is the volume of this weight?
- (5) What is the density of the weight? Equations

- (4) Answer
- (5) Answer

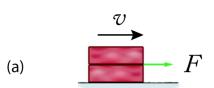
(6) "Der Grosse Fuji" is an airship using helium gas. If its volume is 9230 m³, what is the maximum mass the airship can lift including its mass?
Equations

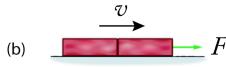
(7,8) Driving home school one day, you spot a ball rolling out into the street.. You brake for $1.25~\rm s$, slowing your 955-kg car from $16.7~\rm m/s$ to $9.3~\rm m/s$.

- (7) What was the average force exerted on your car during braking?
- (8) How much work did the force do while braking?

2010 Pleason Schoolson, Inc.

(7) Answer			


(8) Answer

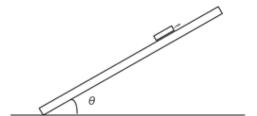

(9) As part of a physics experiment, you stand on a bathroom scale in an elevator. Your mass is 62.0 kg. The elevator is moving downward and the scale reads 74.6 kg. Find the direction and magnitude of the acceleration of the elevator. Equations

(9) Answer			

(10-a) As shown in the figure (a), you stack a brick on top of another identical brick and push on the bricks across a tabletop with a force F and the bricks move with constant speed, v. Is the force of kinetic friction exerted on the bricks greater than, less than, or equal to the force F? (10-b) Next, you place the bricks end to end as shown in the figure (b). Is the force of kinetic friction exerted on the bricks in (b) greater than, less than, or equal to the force of kinetic friction in (a)?

(10-a) Answer	
(10-b) Answer	

(11) A 65-kg sprinter wishes to accelerate from rest to a speed of 14 m/s in a distance of 23 m. What coefficient of static friction between the sprinter's shoes and the track? Equations



 $(12)\,A$ student attaches a rope to a 20.0 kg box of books. He pulls with a force of 90.0 N at an angle of $30.0^\circ\,$ from the horizontal. The coefficient of static friction between the box and the ground is 0.575. Find the force necessary to start the box moving.

(Q12) Answer

(13) In the figure, a 2.4 kg-block is released when the angle is set up at 30.0° . The kinetic friction coefficient $\;\mu$ ' is 0.35. What is the acceleration rate generated on the block?

(Q13) Answer

Trigonometric Function Table

角	正弦 (sin)	余弦 (cos)	正接 (tan)	角	正弦 (sin)	余弦 (cos)	正接 (tan)
0.0°	0.0000	1.0000	0.0000	22.5°	0.3827	0.9239	0.4142
0.5°	0.0087	1.0000	0.0087	23.0°	0.3907	0.9205	0.4245
1.0°	0.0175	0.9998	0.0175	23.5°	0.3987	0.9171	0.4348
1.5°	0.0262	0.9997	0.0262	24.0°	0.4067	0.9135	0.4452
2.0°	0.0349	0.9994	0.0349	24.5°	0.4147	0.9100	0.4557
2.5°	0.0436	0.9990	0.0437	25.0°	0.4226	0.9063	0.4663
3.0°	0.0523	0.9986	0.0524	25.5°	0.4305	0.9026	0.4770
3.5°	0.0610	0.9981	0.0612	26.0°	0.4384	0.8988	0.4877
4.0°	0.0698	0.9976	0.0699	26.5°	0.4462	0.8949	0.4986
4.5°	0.0785	0.9969	0.0787	27.0°	0.4540	0.8910	0.5095
5.0°	0.0872	0.9962	0.0875	27.5°	0.4617	0.8870	0.5206
				П			
5.5°	0.0958	0.9954	0.0963	28.0°	0.4695	0.8829	0.5317
6.0°	0.1045	0.9945	0.1051	28.5°	0.4772	0.8788	0.5430
6.5°	0.1132	0.9936	0.1139	29.0°	0.4848	0.8746	0.5543
7.0°	0.1219	0.9925	0.1228	29.5°	0.4924	0.8704	0.5658
7.5°	0.1305	0.9914	0.1317	30.0°	0.5000	0.8660	0.5774
8.0°	0.1392	0.9903	0.1405	30.5°	0.5075	0.8616	0.5890
8.5°	0.1478	0.9890	0.1495	31.0°	0.5150	0.8572	0.6009
9.0°	0.1564	0.9877	0.1584	31.5°	0.5225	0.8526	0.6128
9.5°	0.1650	0.9863	0.1673	32.0°	0.5299	0.8480	0.6249
10.0°	0.1736	0.9848	0.1763	32.5°	0.5373	0.8434	0.6371
10.5°	0.1822	0.9833	0.1853	33.0°	0.5446	0.8387	0.6494
11.0°	0.1908	0.9816	0.1944	33.5°	0.5519	0.8339	0.6619
11.5°	0.1994	0.9799	0.2035	34.0°	0.5592	0.8290	0.6745
12.0°	0.1934	0.9781	0.2035	34.5°	0.5664	0.8241	0.6873
12.5°	0.2079	0.9763	0.2120	35.0°	0.5736	0.8192	0.7002
	0.2250	0.9744	0.2309	35.5°	0.5807	0.8141	0.7133
13.0°							
13.5°	0.2334	0.9724	0.2401	36.0°	0.5878	0.8090	0.7265
14.0°	0.2419	0.9703	0.2493	36.5°	0.5948	0.8039	0.7400
14.5°	0.2504	0.9681	0.2586	37.0°	0.6018	0.7986	0.7536
15.0°	0.2588	0.9659	0.2679	37.5°	0.6088	0.7934	0.7673
15.5°	0.2672	0.9636	0.2773	38.0°	0.6157	0.7880	0.7813
16.0°	0.2756	0.9613	0.2867	38.5°	0.6225	0.7826	0.7954
16.5°	0.2840	0.9588	0.2962	39.0°	0.6293	0.7771	0.8098
17.0°	0.2924	0.9563	0.3057	39.5°	0.6361	0.7716	0.8243
17.5°	0.3007	0.9537	0.3153	40.0°	0.6428	0.7660	0.8391
18.0°	0.3090	0.9511	0.3249	40.5°	0.6494	0.7604	0.8541
18.5°	0.3173	0.9483	0.3346	41.0°	0.6561	0.7547	0.8693
19.0°	0.3256	0.9455	0.3443	41.5°	0.6626	0.7490	0.8847
19.5°	0.3338	0.9426	0.3541	42.0°	0.6691	0.7431	0.9004
20.0°	0.3420	0.9397	0.3640	42.5°	0.6756	0.7373	0.9163
20.5°	0.3502	0.9367	0.3739	43.0°	0.6820	0.7314	0.9325
21.0°	0.3584	0.9336	0.3139	43.5°	0.6884	0.7254	0.9490
21.5°	0.3665	0.9304	0.3939	44.0°	0.6947	0.7234	0.9450
21.5° 22.0°	1						
	0.3746	0.9272	0.4040	44.5°	0.7009	0.7133	0.9827
22.5°	0.3827	0.9239	0.4142	45.0°	0.7071	0.7071	1.0000

角	正弦 (sin)	余弦 (cos)	正接 (tan)		角	正弦 (sin)	余弦 (cos)	正接 (tan)
45.0°	0.7071	0.7071	1.0000		67.5°	0.9239	0.3827	2.4142
45.5°	0.7133	0.7009	1.0176	Ш	68.0°	0.9272	0.3746	2.4751
46.0°	0.7193	0.6947	1.0355	Ш	68.5°	0.9304	0.3665	2.5386
46.5°	0.7254	0.6884	1.0538	Ш	69.0°	0.9336	0.3584	2.6051
47.0°	0.7314	0.6820	1.0724	Ш	69.5°	0.9367	0.3502	2.6746
47.5°	0.7373	0.6756	1.0913	Ш	70.0°	0.9397	0.3420	2.7475
48.0°	0.7431	0.6691	1.1106	Ш	70.5°	0.9426	0.3338	2.8239
48.5°	0.7490	0.6626	1.1303	Ш	71.0°	0.9455	0.3256	2.9042
49.0°	0.7547	0.6561	1.1504	Ш	71.5°	0.9483	0.3173	2.9887
49.5°	0.7604	0.6494	1.1708	Ш	72.0°	0.9511	0.3090	3.0777
50.0°	0.7660	0.6428	1.1918	Ш	72.5°	0.9537	0.3007	3.1716
50.5°	0.7716	0.6361	1.2131	Ш	73.0°	0.9563	0.2924	3.2709
51.0°	0.7771	0.6293	1.2349	Ш	73.5°	0.9588	0.2840	3.3759
51.5°	0.7826	0.6225	1.2572	Ш	74.0°	0.9613	0.2756	3.4874
52.0°	0.7880	0.6157	1.2799	Ш	74.5°	0.9636	0.2672	3.6059
52.5°	0.7934	0.6088	1.3032	Ш	75.0°	0.9659	0.2588	3.7321
53.0°	0.7986	0.6018	1.3270	Ш	75.5°	0.9681	0.2504	3.8667
53.5°	0.8039	0.5948	1.3514	Ш	76.0°	0.9703	0.2419	4.0108
54.0°	0.8090	0.5878	1.3764	Ш	76.5°	0.9724	0.2334	4.1653
54.5°	0.8141	0.5807	1.4019	Ш	77.0°	0.9744	0.2250	4.3315
55.0°	0.8192	0.5736	1.4281	Ш	77.5°	0.9763	0.2164	4.5107
55.5°	0.8241	0.5664	1.4550	Ш	78.0°	0.9781	0.2079	4.7046
56.0°	0.8290	0.5592	1.4826	Ш	78.5°	0.9799	0.1994	4.9152
56.5°	0.8339	0.5519	1.5108	П	79.0°	0.9816	0.1908	5.1446
57.0°	0.8387	0.5446	1.5399	Ш	79.5°	0.9833	0.1822	5.3955
57.5°	0.8434	0.5373	1.5697	Ш	80.0°	0.9848	0.1736	5.6713
58.0°	0.8480	0.5299	1.6003	Ш	80.5°	0.9863	0.1650	5.9758
58.5°	0.8526	0.5225	1.6319	Ш	81.0°	0.9877	0.1564	6.3138
59.0°	0.8572	0.5150	1.6643	П	81.5°	0.9890	0.1478	6.6912
59.5°	0.8616	0.5075	1.6977	П	82.0°	0.9903	0.1392	7.1154
60.0°	0.8660	0.5000	1.7321	Ш	82.5°	0.9914	0.1305	7.5958
60.5°	0.8704	0.4924	1.7675	Ш	83.0°	0.9925	0.1219	8.1443
61.0°	0.8746	0.4848	1.8040	Ш	83.5°	0.9936	0.1132	8.7769
61.5°	0.8788	0.4772	1.8418	П	84.0°	0.9945	0.1045	9.5144
62.0°	0.8829	0.4695	1.8807	Ш	84.5°	0.9954	0.0958	10.385
62.5°	0.8870	0.4617	1.9210	Ш	85.0°	0.9962	0.0872	11.430
63.0°	0.8910	0.4540	1.9626	Ш	85.5°	0.9969	0.0785	12.706
63.5°	0.8949	0.4462	2.0057	П	86.0°	0.9976	0.0698	14.301
64.0°	0.8988	0.4384	2.0503	П	86.5°	0.9981	0.0610	16.350
64.5°	0.9026	0.4305	2.0965	П	87.0°	0.9986	0.0523	19.081
65.0°	0.9063	0.4226	2.1445	П	87.5°	0.9990	0.0436	22.904
65.5°	0.9100	0.4147	2.1943	Ш	88.0°	0.9994	0.0349	28.636
66.0°	0.9135	0.4067	2.2460	П	88.5°	0.9997	0.0262	38.188
66.5°	0.9171	0.3987	2.2998	П	89.0°	0.9998	0.0175	57.290
67.0°	0.9205	0.3907	2.3559	Ш	89.5°	1.0000	0.0087	114.59
67.5°	0.9239	0.3827	2.4142	١l	90.0°	1.0000	0.0000	

Square and Root

n	n^2	\sqrt{n}
1	1	1.0000
2	4	1.4142
3	9	1.7321
4	16	2.0000
5	25	2.2361
6	36	2.4495
7	49	2.6458
8	64	2.8284
9	81	3.0000
10	100	3.1623

Opinions, excuses etc. 意見、言い訳など