11^{th} Physics (2017 – 18)

(2ndQ, #2Mini Test)

Class	No.	Name					
		I c h	n calculation learly and low to solve	on problems, descri systematically eno e the problems.	ibe equa ugh to s	tions how	
The circular c Gravitational	onstant acceleration rat	e 重力加速度	$\pi = 3$ $g = 9.$.14159 80 m/s ²			
Specific Heat	c [J/(kg • K)]	Gold Silver Fon Sea water Vater Ce Sir	Density [kg/m³] 19,300 13,600 7,860 1,025 1,000 917 1.29 1.29			
water Ice Steam Oil Copper	$ \begin{array}{r} 4186 \\ 2090 \\ 2010 \\ 1970 \\ 387 \end{array} $	H H	Ielium Iydrogen gas	$0.179 \\ 0.0899$			
Ceramic Glass Aluminum Iron (Steel)	$1090 \\ 837 \\ 900 \\ 560$	Vaporiz	Latent ation 融角	t Heat of Fusion 解潜熱 L _f [J/kg]	Latent l	Heat of 蒸発潜熱	L _v [J/kg
Lead	128	Water	水	$3.35 \ge 10^5$	22.6	$x10^{5}$	

4 pt/question x 13 questions = 52 pt Max 50 pt

∕[Total 50 pt]

1/22/2018

(1) (2) A box of mass 4.50 kg rest on a smooth, horizontal floor connected with a box of mass 6.50 kg with string. You pull the 6.50 kg box with a horizontal force of magnitude 50.0 N.

- (1) What is the acceleration of the boxes?
- (2) What is the tensional force of the string? Equations

(1) Answer

(2) Answer

(3) A person pulls a 25 kg suitcase with a strap with a force of 33 N at an angle of 33° to the direction of motion through a displacement of 56 m, as shown in the figure. Find the work done by the force.
Equations

(3) Answer

2 Keio Academy of New York 1/22/2018 By Tohei Moritani

(4) You want to load a 36 kg box onto the stage 1.6 m high of the gym by lifting it directly, as shown in Fig. A. Find the magnitude of the force required and the work done by the force.

(5) Instead of the above you load the box by sliding it up a loading ramp 7.5 m long, as shown in Fig. B. Assuming the box slides on the floor and ramp without friction, find the magnitude of the force required and the work done by the force.

Equations

(4) Answer

Force

Work

(5) Answer

Force

Work

(6,7) A 2.0 kg body is moving on a horizontal rough plane. The body passes at point A with a speed of 8.0 m/s and then at point B with a speed of 5.0 m/s. The distance between A and B is 3.0 m. (6) Find the work done by the kinetic frictional force between A and B.

(7) Find the magnitude of the kinetic frictional force.

(8) At the end of a graduation ceremony, graduates fling their caps into the air. A graduate throws her 0.120 kg cap upward with an initial speed of 8.88 m/s. After the cap is thrown from the release point 2.00 m high from the ground, the cap reaches the maximum height at 3.88 m from the ground and then begins to fall. Assuming that the frictional forces can be ignored, find the speed of the cap when it passes the point 3.24 m high from the ground.

(8) Answer

) Answer

1/22/2018

(9) A 1.90-kg block slides on a horizontal, frictionless surface until it encounters a spring with a force constant of 942 N/m. The block comes to rest after compressing the spring a distance of 5.60 cm. Find the initial speed of the block. Equations

(9) Answer

By Tohei Moritani

1/22/2018

(10,11) A 42.0 kg seal at an amusement park slides from rest down a ramp into the pool below. The top of the ramp is 1.75 m higher than the surface of the water, and the ramp is inclined at an angle of 35.0° above the horizontal. The seal reaches the water with a speed of 4.40 m/s.

(10) Find the work done by kinetic friction.

(11) Find the coefficient of kinetic friction between the seal and the ramp.

Equations

(10-a) Answer

(10-b) Answer

1/22/2018

(11) The water slide shown in the figure ends at a height of 1.65 m above the pool. The ending part is horizontal. If the person starts from rest at the top of the water slider and lands in the water at point P, 2.63 m far from the end of the slide, what is the height h of the water slide? (Assume the water slid is frictionless.) Equations

(Q11) Answer

7 Keio Academy of New York

1/22/2018 By Tohei Moritani

11thPhysics(2017-18) 2ndQ Quiz-2

(12) A 241-g iron ball at a temperature of 84.2° C is placed in a calorimeter containing 177 g of water at 21.2°C. Find the equilibrium temperature of the system. Equations

(12) Answer

1/22/2018

(13) A 55-g lead bullet is fired into a wood. The initial speed of the bullet is 280 m/s, and when it comes to rest, half of its kinetic energy goes into heating it. How much does the bullet's temperature increase? Equations

(13) Answer

1/22/2018

Trigonometric Function Table

角	正弦 (sin)	余弦 (cos)	正接 (tan)	角	正弦 (sin)	余弦 (cos)	正接 (tan)]	11.	777742 (-1)	ムオ ()	T+2 ()	4	7724 (-!)	AH ()	プセクト
0.0°	0.0000	1.0000	0.0000	22.5°	0.3827	0.9239	0.4142	1	角	止弦 (sin)	宋弦 (cos)	止按 (tan)	角	止5么 (sin)	余弦 (cos)	止按 (tan)
0.5°	0.0087	1.0000	0.0087	23.0°	0.3907	0.9205	0.4245		45.0°	0.7071	0.7071	1.0000	67.8	0.9239	0.3827	2.4142
1.0°	0.0175	0.9998	0.0175	23.5°	0.3987	0.9171	0.4348		45.5°	0.7133	0.7009	1.0176	68.0	° 0.9272	0.3746	2.4751
1.5°	0.0262	0.9997	0.0262	24.0°	0.4067	0.9135	0.4452		46.0°	0.7193	0.6947	1.0355	68.5	° 0.9304	0.3665	2.5386
2.0°	0.0349	0.9994	0.0349	24.5°	0.4147	0.9100	0.4557		46.5°	0.7254	0.6884	1.0538	69.0	° 0.9336	0.3584	2.6051
2.5°	0.0436	0.9990	0.0437	25.0°	0.4226	0.9063	0.4663		47.0°	0.7314	0.6820	1.0724	69.5	° 0.9367	0.3502	2.6746
				07.70	0.1005				47.5°	0.7373	0.6756	1.0913	70.0	° 0.9397	0.3420	2.7475
3.0°	0.0523	0.9986	0.0524	25.5	0.4305	0.9026	0.4770		48.0°	0 7431	0.6691	1 1106	70 5	° 0.9426	0.3338	2 8239
3.5	0.0610	0.9981	0.0612	26.0*	0.4384	0.8988	0.4877		48.5°	0.7490	0.6626	1 1303	71.0	° 0.9455	0.3256	2 9042
4.0	0.0698	0.9976	0.0699	26.5	0.4462	0.8949	0.4986		49.0°	0.7547	0.6561	1 1504	71.5	0.9483	0.3173	2 9887
4.5	0.0785	0.9969	0.0787	27.0	0.4540	0.8910	0.5095		49.5°	0.7604	0.6494	1.1708	72.0	° 0.9511	0.3090	3.0777
5.0	0.0872	0.9962	0.0875	27.5	0.4617	0.8870	0.5206		50.0°	0.7660	0.6428	1.1918	72.5	° 0.9537	0.3007	3.1716
5.5°	0.0958	0.9954	0.0963	28.0°	0.4695	0.8829	0.5317					4 94 94	-		0.000.4	0.0500
6.0°	0.1045	0.9945	0.1051	28.5°	0.4772	0.8788	0.5430		50.5	0.7716	0.6361	1.2131	73.0	0.9563	0.2924	3.2709
6.5°	0.1132	0.9936	0.1139	29.0°	0.4848	0.8746	0.5543		51.0	0.7771	0.6293	1.2349	73.8	0.9588	0.2840	3.3759
7.0°	0.1219	0.9925	0.1228	29.5°	0.4924	0.8704	0.5658		51.5	0.7826	0.6225	1.2572	74.0	0.9613	0.2756	3.4874
7.5°	0.1305	0.9914	0.1317	30.0°	0.5000	0.8660	0.5774		52.0	0.7880	0.6157	1.2799	74.0	0.9636	0.2672	3.6059
8.0°	0.1392	0.9903	0.1405	30.5°	0.5075	0.8616	0.5890		52.5	0.7934	0.6088	1.3032	75.0	0.9659	0.2588	3.7321
8.5°	0.1478	0.9890	0.1495	31.0°	0.5150	0.8572	0.6009		53.0°	0.7986	0.6018	1.3270	75.5	° 0.9681	0.2504	3.8667
9.0°	0.1564	0.9877	0.1584	31.5°	0.5225	0.8526	0.6128		53.5°	0.8039	0.5948	1.3514	76.0	° 0.9703	0.2419	4.0108
9.5°	0.1650	0.9863	0.1673	32.0°	0.5299	0.8480	0.6249		54.0°	0.8090	0.5878	1.3764	76.5	° 0.9724	0.2334	4.1653
10.0°	0.1736	0.9848	0.1763	32.5°	0.5373	0.8434	0.6371		54.5°	0.8141	0.5807	1.4019	77.0	° 0.9744	0.2250	4.3315
10.00	0.4000	0.0000		00.00	0.5440	0.000			55.0°	0.8192	0.5736	1.4281	77.8	° 0.9763	0.2164	4.5107
10.5	0.1822	0.9833	0.1853	33.0°	0.5446	0.8387	0.6494		55.5°	0.8241	0.5664	1.4550	78.0	° 0.9781	0.2079	4.7046
11.0	0.1908	0.9816	0.1944	33.5	0.5519	0.8339	0.6619		56.0°	0.8290	0.5592	1.4826	78.5	0.9799	0.1994	4.9152
11.5	0.1994	0.9799	0.2035	34.0	0.5592	0.8290	0.6745		56.5°	0.8339	0.5519	1.5108	79.0	° 0.9816	0.1908	5.1446
12.0	0.2079	0.9781	0.2120	34.0 25.0°	0.5004	0.8241	0.0873		57.0°	0.8387	0.5446	1.5399	79.5	° 0.9833	0.1822	5.3955
12.5	0.2104	0.9705	0.2217	35.0	0.5750	0.8192	0.7002		57.5°	0.8434	0.5373	1.5697	80.0	° 0.9848	0.1736	5.6713
13.0°	0.2250	0.9744	0.2309	35.5°	0.5807	0.8141	0.7133		FO 00			1 0000			0.1050	
13.5°	0.2334	0.9724	0.2401	36.0°	0.5878	0.8090	0.7265		58.0	0.8480	0.5299	1.6003	80.8	0.9863	0.1650	5.9758
14.0°	0.2419	0.9703	0.2493	36.5°	0.5948	0.8039	0.7400		50.0	0.8526	0.5225	1.6319	81.0	0.9877	0.1564	0.3138
14.5°	0.2504	0.9681	0.2586	37.0°	0.6018	0.7986	0.7536		59.0	0.8572	0.5150	1.0043	81.0	0.9890	0.1478	0.0912
15.0°	0.2588	0.9659	0.2679	37.5°	0.6088	0.7934	0.7673		09.0 60.0°	0.8610	0.5075	1.0977	02.0	0.9903	0.1392	7.1134
15.5°	0.2672	0.9636	0.2773	38.0°	0.6157	0.7880	0.7813		60.0	0.8660	0.5000	1.7521	02.0	0.9914	0.1505	1.5958
16.0°	0.2756	0.9613	0.2867	38.5°	0.6225	0.7826	0.7954		60.5°	0.8704	0.4924	1.7675	83.0	° 0.9925	0.1219	8.1443
16.5°	0.2840	0.9588	0.2962	39.0°	0.6293	0.7771	0.8098		61.0°	0.8746	0.4848	1.8040	83.5	° 0.9936	0.1132	8.7769
17.0°	0.2924	0.9563	0.3057	39.5°	0.6361	0.7716	0.8243		61.5°	0.8788	0.4772	1.8418	84.0	° 0.9945	0.1045	9.5144
17.5°	0.3007	0.9537	0.3153	40.0°	0.6428	0.7660	0.8391		62.0°	0.8829	0.4695	1.8807	84.5	° 0.9954	0.0958	10.385
18.00	0.2000	0.0511	0.2240	40.50	0.6404	0.7604	0.8541		62.5°	0.8870	0.4617	1.9210	85.0	° 0.9962	0.0872	11.430
18.5°	0.3050	0.9311	0.3245	40.0	0.6561	0.7604	0.8693		63.0°	0.8910	0.4540	1.9626	85.5	° 0.9969	0.0785	12.706
10.0	0.3256	0.9455	0.3340	41.5°	0.6626	0.7347	0.8847		63.5°	0.8949	0.4462	2.0057	86.0	° 0.9976	0.0698	14.301
10.50	0.3338	0.9435	0.3541	42.00	0.6691	0.7430	0.0047		64.0°	0.8988	0.4384	2.0503	86.5	° 0.9981	0.0610	16.350
20.00	0.3420	0.9397	0.3640	42.5°	0.6756	0.7373	0.9163		64.5°	0.9026	0.4305	2.0965	87.0	° 0.9986	0.0523	19.081
20.0	0.0420	0.0001	0.0010	12.0	0.0100	0.1010	0.0100		65.0°	0.9063	0.4226	2.1445	87.5	° 0.9990	0.0436	22.904
20.5°	0.3502	0.9367	0.3739	43.0°	0.6820	0.7314	0.9325		65.50	0.0100	0.4147	2 10/2	0.07	0.0004	0.0240	28 626
21.0°	0.3584	0.9336	0.3839	43.5°	0.6884	0.7254	0.9490		66.0°	0.9100	0.4147	2.1945	88	0.9994	0.0349	28.000
21.5	0.3665	0.9304	0.3939	44.0°	0.6947	0.7193	0.9657		66.5°	0.9133	0.3987	2 2008	89.0	0.9997	0.0202	57 290
22.0	0.3746	0.9272	0.4040	44.5	0.7009	0.7133	0.9827		67.0°	0.9205	0.3907	2.3559	89	° 1.0000	0.0087	114.59
22.5	0.3827	0.9239	0.4142	45.0°	0.7071	0.7071	1.0000	J	67.5°	0.9239	0.3827	2.4142	90.0	° 1.0000	0.0000	

Square and Root

n	n^2	\sqrt{n}
1	1	1.0000
2	4	1.4142
3	9	1.7321
4	16	2.0000
5	25	2.2361
6	36	2.4495
7	49	2.6458
8	64	2.8284
9	81	3.0000
10	100	3.1623

Opinions, excuses etc.

10 Keio Academy of New York

1/22/2018