11^{th} Physics (2017 – 18)

(4thQ, #2 Mini Test)

Class N	Jo.	Name							
··		_	In a calculation problem, describe equations clearly and systematically enough to show how to solve the problem. <u>If not enough, you</u> <u>won't get any point.</u>						
Gravitational accel	eration rate		g = 9.80 m/s ²						
The speed of sound	in air		$V = 331.5 \pm 0.6t [m/s] \pm ^{\circ}C$						
In this test, use 343	3 m/s as the sp	eed of sound in	air.						
The speed of light i	n vacuum		$c = 3.00 \text{ x } 10^8 \text{ m/s}$						
Elementary Charge	е		$e = 1.60 \ge 10^{-19} C$						
Electron Mass			$m_e = 9.11 \ x \ 10^{-31} \ kg$						
Proton Mass			$m_p = 1.673 \text{ x } 10^{-27} \text{ kg}$						
Coulomb's Law Constant			$k = 8.99 \text{ x } 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$						
Universal Gravitational Constant			$G = 6.67 \ge 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$						
emversar dravitat	r		$N_A = 6.022 \text{ x } 10^{23} \text{ mol}^{-1}$						
Avogadro's Number	1		n = 1.33						
Avogadro's Numbe Refractive Index of	Water		n = 1.33						
Avogadro's Numbe Refractive Index of Refractive Index of	Water Lce		n = 1.33 n = 1.31						
Avogadro's Number Refractive Index of Refractive Index of Refractive Index of	' Water ' Ice ' Diamond		n = 1.33 n = 1.31 n = 2.42						

4 pt/question x 13 questions = 52 pt Max 50 pt

∕[Total 50 pt]

1 Keío Academy of New York

In this test, use $343 \ \mathrm{m/s}$ as the speed of sound in air.

 At Zion National Park a loud shout produces an echo 1.80 s later from a colorful sandstone cliff. How far away is the cliff? (Equations)

2) Two violinists, one directly behind the other, play for a listener directly in front of them. Both violinists sound concert A (440 Hz). What is the smallest separation between the violinists that will produce destructive interference for the listener? (Equations)

(2) Answer

By Tohei Moritani

5/17/2018

(3) Two strings that are identical each other, except that one is 0.560 cm longer than the other. Waves on these strings propagate with a speed of 34.2 m/s. The fundamental frequency of the shorter string is 212 Hz. What beat frequency is produced if each string is vibrating its fundamental frequency? (Equations)

(3) Answer

(4) The organ pipe in the figure is 3.25 m long. What is the frequency of the standing wave shown in the pipe?

(4) Answer

(5) The frequency of the standing wave shown in the figure is 432Hz. What is the length of the pipe?

(5) Answer

4 Keio Academy of New York By Tohei Moritani

5/17/2018

(6-a) A bat is moving with a speed of 3.25 m/s and emitting sound of 35.0 kHz approaching a moth at rest on a tree trunk. What frequency is heard by the moth? (Equations)

(6-b) A particular galaxy in the universe emits orange light with a frequency of 5.000×10^{14} Hz. If the galaxy is moving away from Earth with a speed of 3325 km/s, what is the frequency of the light when it is observed on Earth? (Equations)

(6-a) Answer	
(6-b) Answer	

(7,8) A sound is emitted at an open end as a piston is being pulled to the right. The first and second resonances are observed at l1 = 23.5 cm and l2 = 72.9 cm, respectively.

(7-a) Find the wavelength. Assume that there can be some difference between the opening place and the position of antinode of the sound.

(7-b) Find the frequency of the sound inside the pipe.

(8-c) Find the place that the density change is the smallest when the piston is placed at l_2 , not including the opening place.

(8-d) When the piston is placed at $l\!\!2,$ the frequency is increased. Find the next resonance frequency.

(Equations)

(7-b) Answer

(8-c) Answer

(8-d) Answer

6 Keio Academy of New York 5/17/2018

By Tohei Moritani

(9-a) What oscillates in an electromagnetic wave?

(9-b) Which waves have the smallest wavelength, yellow, blue, infrared or ultraviolet waves?

(10-c) A TV screen has 3,000,000 pixels. When the screen shows the image in the figure at the right, how many red color dots are lit?

(10-d) A beam of vertically polarized light encounters two polarizing filters, as shown in the figure at the right. Rank the three cases, A, B and C, in order of increasing transmitted intensity. Indicate ties where appropriate.

(9-a) Answer	
(9-b) Answer	
(10-c) Answer	
(10-d) Answer	

(11) Sunlight enters a room at an angle of 32° above the horizontal and reflected from a small mirror lying flat on the floor. The reflected light forms a spot on a wall that is 2.0 m behind the mirror, as shown in the figure. If you now place a pencil under the edge of the mirror nearer the wall, tilting it upward by 5.0°, how much higher on the wall (Δy) is the spot? (Equations)

(11) Answer

(12-a) A beam of incident light in air strikes a surface of water (n = 1.33) at an angle of $\theta = 44^{\circ}$ relative to the normal as shown in the figure. How does the light propagate at the surface? Find the angle(s) between the propagation path(s) and the normal and draw line(s) inside the figure with the value(s) of angle(s). (Equations)

(12-b) A beam of incident light in water strikes a surface of at an angle of $\theta = 44^{\circ}$ relative to the normal as shown in the figure. How does the light propagate at the surface? Find the angle(s) between the propagation path(s) and the normal and draw line(s) inside the figure with the value(s) of angle(s).

(12-b) Answer	Draw lines and angles in
the figure.	

(13-a) Find the critical angle for light travelling from diamond (n = 2.42) to water (n = 1.33) (Equations)

(13-b) A glass paperweight with an refractive index n = 1.38 rests on a desk. An incident ray of light traveling in air enters the horizontal top surface of the paperweight at an angle θ to the normal. Find the value of θ for which the reflection at P is total reflection.

(13 ⁻ a) Ans

(13-b) Answer

Trigonometric Function Table

角	正弦 (sin)	余弦 (cos)	正接 (tan)	角	正弦 (sin)	余弦 (cos)	正接 (tan)	1	11		(A34-7)		12.		AH()	ゴセン
0.0°	0.0000	1.0000	0.0000	22.5°	0.3827	0.9239	0.4142	1	角	止弦 (sin)	余弦 (cos)	止接 (tan)	角	止弦 (sin)	余弦 (cos)	止接 (tan)
0.5°	0.0087	1.0000	0.0087	23.0°	0.3907	0.9205	0.4245		45.0°	0.7071	0.7071	1.0000	67.5°	0.9239	0.3827	2.4142
1.0°	0.0175	0.9998	0.0175	23.5°	0.3987	0.9171	0.4348		45.5°	0.7133	0.7009	1.0176	68.0°	0.9272	0.3746	2.4751
1.5°	0.0262	0.9997	0.0262	24.0°	0.4067	0.9135	0.4452		46.0°	0.7193	0.6947	1.0355	68.5°	0.9304	0.3665	2.5386
2.0°	0.0349	0.9994	0.0349	24.5°	0.4147	0.9100	0.4557		46.5°	0.7254	0.6884	1.0538	69.0°	0.9336	0.3584	2.6051
2.5°	0.0436	0.9990	0.0437	25.0°	0.4226	0.9063	0.4663		47.0°	0.7314	0.6820	1.0724	69.5°	0.9367	0.3502	2.6746
0.00	0.0500	0.0000	0.0504	07.79	0.4005	0.0000	0.4770		47.5°	0.7373	0.6756	1.0913	70.0°	0.9397	0.3420	2.7475
3.0	0.0523	0.9986	0.0524	25.5	0.4305	0.9026	0.4770		48.0°	0.7431	0.6691	1.1106	70.5°	0.9426	0.3338	2.8239
3.5	0.0610	0.9981	0.0612	26.0	0.4384	0.8988	0.4877		48.5°	0.7490	0.6626	1.1303	71.0°	0.9455	0.3256	2.9042
4.0	0.0098	0.9970	0.0099	20.0	0.4402	0.8949	0.4986		49.0°	0.7547	0.6561	1.1504	71.5°	0.9483	0.3173	2.9887
5.0°	0.0133	0.9962	0.0875	27.5°	0.4617	0.8870	0.5206		49.5°	0.7604	0.6494	1.1708	72.0°	0.9511	0.3090	3.0777
0.0	0.0012	0.0002	0.0010	21.0	0.4017	0.0010	0.0200		50.0°	0.7660	0.6428	1.1918	72.5°	0.9537	0.3007	3.1716
5.5°	0.0958	0.9954	0.0963	28.0°	0.4695	0.8829	0.5317		50.59	0.7716	0.6261	1 91 91	72 0°	0.0562	0.2024	2 2700
6.0°	0.1045	0.9945	0.1051	28.5°	0.4772	0.8788	0.5430		51.0°	0.7771	0.0301	1.2131	73.5°	0.9505	0.2924	3.2709
6.5	0.1132	0.9936	0.1139	29.0	0.4848	0.8746	0.5543		51.5°	0.7826	0.6225	1.2549	74.0°	0.9568	0.2340	3.4874
7.0°	0.1219	0.9925	0.1228	29.5	0.4924	0.8704	0.5658		52.0°	0.7880	0.6157	1.2799	74.5°	0.9636	0.2672	3 6059
7.5*	0.1305	0.9914	0.1317	30.0*	0.5000	0.8660	0.5774		52.5°	0.7934	0.6088	1.3032	75.0°	0.9659	0.2588	3.7321
8.0°	0.1392	0.9903	0.1405	30.5°	0.5075	0.8616	0.5890					1.000	0			0.11021
8.5°	0.1478	0.9890	0.1495	31.0°	0.5150	0.8572	0.6009		53.0°	0.7986	0.6018	1.3270	75.5°	0.9681	0.2504	3.8667
9.0°	0.1564	0.9877	0.1584	31.5°	0.5225	0.8526	0.6128		53.5°	0.8039	0.5948	1.3514	76.0°	0.9703	0.2419	4.0108
9.5°	0.1650	0.9863	0.1673	32.0°	0.5299	0.8480	0.6249		54.0	0.8090	0.5878	1.3764	76.5	0.9724	0.2334	4.1653
10.0°	0.1736	0.9848	0.1763	32.5°	0.5373	0.8434	0.6371		54.5 55.0°	0.8141	0.5807	1.4019	77.50	0.9744	0.2250	4.5315
10.5°	0.1822	0.9833	0.1853	33.0°	0.5446	0.8387	0.6494		55.0	0.8192	0.0100	1.4201	11.5	0.9705	0.2104	4.5107
11.0°	0.1908	0.9816	0.1944	33.5°	0.5519	0.8339	0.6619		55.5°	0.8241	0.5664	1.4550	78.0°	0.9781	0.2079	4.7046
11.5°	0.1994	0.9799	0.2035	34.0°	0.5592	0.8290	0.6745		56.0°	0.8290	0.5592	1.4826	78.5°	0.9799	0.1994	4.9152
12.0°	0.2079	0.9781	0.2126	34.5°	0.5664	0.8241	0.6873		56.5°	0.8339	0.5519	1.5108	79.0°	0.9816	0.1908	5.1446
12.5°	0.2164	0.9763	0.2217	35.0°	0.5736	0.8192	0.7002		57.0°	0.8387	0.5446	1.5399	79.5°	0.9833	0.1822	5.3955
13.0°	0.2250	0.9744	0.2309	35.5°	0.5807	0.8141	0.7133		57.5°	0.8434	0.5373	1.5697	80.0°	0.9848	0.1736	5.6713
13.5°	0.2334	0.9724	0.2401	36.0°	0.5878	0.8090	0.7265		58.0°	0.8480	0.5299	1.6003	80.5°	0.9863	0.1650	5.9758
14.0°	0.2419	0.9703	0.2493	36.5°	0.5948	0.8039	0.7400		58.5°	0.8526	0.5225	1.6319	81.0°	0.9877	0.1564	6.3138
14.5°	0.2504	0.9681	0.2586	37.0°	0.6018	0.7986	0.7536		59.0°	0.8572	0.5150	1.6643	81.5°	0.9890	0.1478	6.6912
15.0°	0.2588	0.9659	0.2679	37.5°	0.6088	0.7934	0.7673		59.5°	0.8616	0.5075	1.6977	82.0°	0.9903	0.1392	7.1154
15 50	0.9679	0.0626	0.9772	20.00	0.6157	0.7990	0.7812		60.0°	0.8660	0.5000	1.7321	82.5°	0.9914	0.1305	7.5958
16.0°	0.2072	0.9630	0.2775	38.5°	0.6157	0.7826	0.7813		60.5°	0.8704	0.4924	1.7675	83.0°	0.9925	0.1219	8.1443
16.5°	0.2730	0.9588	0.2007	39.0°	0.6223	0.7771	0.8098		61.0°	0.8746	0.4848	1.8040	83.5°	0.9936	0.1132	8.7769
17.0°	0.2924	0.9563	0.3057	39.5°	0.6361	0.7716	0.8243		61.5°	0.8788	0.4772	1.8418	84.0°	0.9945	0.1045	9.5144
17.5°	0.3007	0.9537	0.3153	40.0°	0.6428	0.7660	0.8391		62.0°	0.8829	0.4695	1.8807	84.5°	0.9954	0.0958	10.385
10.02	0.0000	0.0511	0.00.00	10.50	0.0404	0.5004	0.0541		62.5°	0.8870	0.4617	1.9210	85.0°	0.9962	0.0872	11.430
18.0*	0.3090	0.9511	0.3249	40.5	0.6494	0.7604	0.8541		63.0°	0.8910	0.4540	1.9626	85.5°	0.9969	0.0785	12,706
18.5	0.3173	0.9483	0.3346	41.0	0.6561	0.7547	0.8693		63.5°	0.8949	0.4462	2.0057	86.0°	0.9976	0.0698	14.301
10.5°	0.3230	0.9455	0.3443	41.0	0.6601	0.7490	0.8847		64.0°	0.8988	0.4384	2.0503	86.5°	0.9981	0.0610	16.350
20.0°	0.3338	0.9420	0.3640	42.0	0.6756	0.7451	0.9004		64.5°	0.9026	0.4305	2.0965	87.0°	0.9986	0.0523	19.081
20.0	0.0420	0.0001	0.0040	42.0	0.0100	0.1010	0.9103		65.0°	0.9063	0.4226	2.1445	87.5°	0.9990	0.0436	22.904
20.5°	0.3502	0.9367	0.3739	43.0°	0.6820	0.7314	0.9325		CE EO	0.0100	0.4147	2 10 42	00 00	0.0004	0.0240	20 626
21.0°	0.3584	0.9336	0.3839	43.5°	0.6884	0.7254	0.9490		66.0°	0.9100	0.4147	2.1943	08.0°	0.9994	0.0349	28.030
21.5°	0.3665	0.9304	0.3939	44.0°	0.6947	0.7193	0.9657		66.5°	0.9171	0.3987	2 2008	89.0°	0.9997	0.0202	57 290
22.0	0.3746	0.9272	0.4040	44.5	0.7009	0.7133	0.9827		67.0°	0.9205	0.3907	2.3559	89.5°	1.0000	0.0087	114.59
22.5	0.3827	0.9239	0.4142	40.0°	0.7071	0.7071	1.0000	J	67.5°	0.9239	0.3827	2.4142	90.0°	1.0000	0.0000	

Square and Square Root Table

n	n^2	\sqrt{n}
1	1	1.0000
2	4	1.4142
3	9	1.7321
4	16	2.0000
5	25	2.2361
6	36	2.4495
7	49	2.6458
8	64	2.8284
9	81	3.0000
10	100	3.1623

(The solution will be shown on the Website of Physic Class tonight.)

11 Keío Academy of New York

5/17/2018