

12th Physics (2017 – 18)

(2nd Q, #2 Mini Test)

Class	No.	Name	Salutions	
-------	-----	------	-----------	--

In calculation problems, describe equations clearly and systematically enough to show how to solve the problems.

Gravitational acceleration rate	$g = 9.80 \text{ m/s}^2$
Universal Gravitational Constant	$G = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$
Radius of the Earth	$R_E = 6.37 \times 10^6 m$
Mass of the Earth	$M_{\rm E} = 5.97 \ x \ 10^{24} \ kg$
Mass of the Moon	$M_M = 7.34 \times 10^{22} \text{ kg}$
Mass of the Sun	$M_{\rm S} = 1.988 \times 10^{30} \text{ kg}$
Angular speed of Earth's Rotation	$\omega = 7.29 \times 10^{-5} \text{ rad/s}$
Density of Water	$\rho \text{ (water)} = 1,000 \text{ kg/m}^3$

4 pt/question x 13 questions = 52 pt Max 50 pt

/[Total 50 pt]

1 Keío Academy of New York 1/22/2018

By Tohei Moritani

(1) At what altitude above the Earth's surface is the acceleration due to gravity equal to g/2? Equations

$$F = G \frac{ME}{V^{2}} m$$

$$\frac{g}{1} = \frac{GME}{V^{2}}, \quad V = RE + E$$

$$V = \sqrt{\frac{2GME}{g}}$$

$$= \sqrt{\frac{2 \times b.67 \times 10^{-17} \times 5.87 \times 10^{25}}{9.80}}$$

$$= \sqrt{\frac{8.127 \times 10^{13}}{9.80}}$$

$$= 9.0147 \times 10^{6}$$

$$= (9.0147 - 6.37) \times 10^{6}$$

$$= 2.64 \times 7 \times 10^{6}$$

$$\Rightarrow 2.64 \times 10^{6} (mn)$$

$$= 2640 \text{ fem}$$

(2) Answer

2640 Em

(36%)

(2) Find the period of revolution for the planet Mercury, whose average distance from the Sun is 5.79 x 10^{10} m. Equations

(2) Answer 88, 0 days

(67%)

(3) To what radius does the Earth have to compressed to become a black hole? Equations

$$\frac{1}{2}mv^{2} - G \frac{HE}{r} = 0$$

$$V = \sqrt{\frac{2GHE}{r}} = C$$

$$V = \frac{2GHE}{C^{2}}$$

$$= \frac{2 \times 6.67 \times 10^{11} \times 5.87 \times 10^{24}}{3.0^{2} \times 10^{16}}$$

$$= 8.8 \times 10^{-11 + 2e - 16}$$

$$= 8.84 \times 10^{-11 + 2e - 16}$$

(3) Answer (0)

(4) One of the Global Positioning System satellites has a speed of 4.46 km/s at perigee and a speed of 3.64 km/s at apgee. If the distance from the center of the Earth to the satellite at pergee is 2.00×10^4 km, what is the corresponding distance at apogee? Equations

$$\frac{1}{2} \operatorname{Va} V_{A} = \frac{1}{2} \operatorname{Vp} V_{p}$$

$$\operatorname{Va} = \frac{V_{p}}{V_{a}} \operatorname{V}_{7}$$

$$= \frac{4.46}{3.64} \times 2.00 \times 10^{9}$$

$$= 2.45 \times 10^{9} \text{ km}$$

4) Answer 2. 45 × 10° km (38%) ((5,6) A mass attached to a spring oscillates with a period of 3.35 s. The mass starts from rest at x = 0.0440 m and the time t = 0.

(5) Where is the mass at time t = 6.37 s?

(6) Find the direction and magnitude of the velocity of the mass at $t=6.37\ s.$

Equations

$$T = 3.35 (s)$$

$$A = 0.0440 m$$

$$X = A \cos\left(\frac{2\pi}{T} t \left[\text{rad}\right]\right)$$

$$= A \cos\left(\frac{2\pi}{T} \cdot \frac{360}{2\pi} \cdot t \left[\frac{\text{degree}}{\text{Tad}}\right]\right)$$

$$= 0.0440 \cos\left(\frac{360}{T} t\right)$$

(5)
$$t = 6.375$$

 $\chi = 0.0440005 \left(\frac{360}{3.35} \times 6.37 \right)$
 $= 0.03584 \longrightarrow 0.0358 \ (m)$

(6)
$$\chi = -A \sin \theta$$

$$\chi = -A \frac{2\pi}{T} \sin \left(\frac{2\pi}{T} t \left[\text{Nad}\right]\right)$$

$$= -A \frac{2\pi}{T} \sin \left(\frac{2\pi}{T} \times \frac{36^{\circ}}{2\pi} t \left[\text{degree}\right]\right)$$

$$= -0.0440 \sin \left(\frac{360}{3.35} \times 6.37\right)$$

$$= -0.04789$$
(6) Answer
$$0.0358 \text{ m} \left(\frac{\text{positive}}{2}\right)$$

$$= -0.04789$$

$$0.0358 \text{ m} \left(\frac{\text{positive}}{2}\right)$$

$$= -0.04789$$

(7,8) Two people with a combined mass of 135 kg hop into an old car with worn out shock absorbers. This causes the springs to compresses by 8.50 cm. When the car hits a bump in the road, it oscillates up and down with a period of T=1.65 s.

- (7) Find the spring constant of the springs.
- (8) Find the mass of the car.
- (9) Assuming the motion is simple harmonic, find the magnitude position, velocity, and acceleration of the apple at the times T/4.

Equations

(7)
$$F = \hbar x$$

$$\hbar = \frac{F}{x} = \frac{135 \times 1.80}{8.50 \times 10^{2}} = 15565$$

->15600

(8)
$$T = 2\pi \sqrt{\frac{M}{R}}$$

$$M = R \left(\frac{T}{2\pi}\right)^{2}$$

$$= 15565 \times \left(\frac{1.65}{2\pi}\right)^{2}$$

$$= 1073$$

$$\rightarrow 1070$$

 $\chi = A \cos\left(\frac{2\pi}{7}, \frac{7}{4}\right)$ $= A \cos\left(\frac{2\pi}{7}, \frac{7}{4}\right)$ $= A \cos\left(\frac{2\pi}{7}, \frac{7}{4}\right)$ $= -8.80 \frac{2\pi}{1.65} \sin\frac{\pi}{2}$ = -32.37 = -32.47 $\Rightarrow -36.5 \text{ (em.)}$

Q = - 10 = 0

(7) Answer

15600 N/m (84%)

- (8) Answer
- (9) Answer

 position

 velocity

 acceleration

 (50%)

7 Keio Academy of New York

123 cm/52

1/22/2018 By

By Tohei Moritani

(10,11) The vertical displacement of a wave on a string is described by the equation y(x,t) = Asin(Bx + C), in which A, B, and C are positive constants.

(10-a) Does this wave propagate in the positive or negative x direction?

(10-b) What is the physical meaning of the constant A?

(11-c) What is the speed of this wave?

(11-d) What is the smallest positive time t for which the wave has zero displacement at the point x = 0?

Equations

$$\mathcal{J}(\alpha,t) = A \operatorname{Add}(\frac{\alpha}{\lambda} + \frac{t}{T})$$

$$B = \frac{2\pi}{\lambda} \quad C = \frac{2\pi}{T}$$

$$\lambda = \frac{2\kappa}{B}, T = \frac{2\kappa}{C} \quad f = \frac{t}{T} = \frac{C}{2\pi}$$

$$(c) \quad \mathcal{U} = f\lambda = \frac{\mathcal{Z}C}{2\pi} \times \frac{2\kappa}{B} = \frac{C}{B}$$

8 1/22/2018 Keio Academy of New York

By Tohei Moritani

(12) Sound 1 has the intensity of $38.0~W/m^2$. Sound 2 has an intensity level that is 2.60~dB greater than the intensity of level of sound 1. What is the intensity of sound 2? Equations

$$\frac{I_{2}}{I_{1}} = 10^{8} = 10^{0.26} = 1.820$$

$$I_{2} = 1.820 \times 38.0 = 69.149$$

$$\rightarrow 69.1$$

(12) Answer

69, 1 W/m

(13%)

12thPhysics(2017-18) 2nd Q Quiz-2

(13) A solid block is suspended from a spring scale. When the block is in air, the scale reads 35.0 N and when immersed in water the scale reads 31.1 N.
What is the density of the block?
Equations

$$F = Mg \implies m = \frac{F}{g} = \frac{35.0}{9.80} = 3.57/(Rg)$$

$$P_{\omega}V_{3}^{2} + F' = mg$$

$$V = \frac{mg - F'}{P_{\omega}g}$$

$$= \frac{35.0 - 3/.1}{1000 \times 5.80} = \frac{3.9}{9800}$$

$$= 3.980 \times 10^{-4}$$

$$\rho = \frac{m}{V} = \frac{3.577}{3.980 \times 10^{4}}$$
= 8974

10 Keio Academy of New York 1/22/2018 By Tohei Moritani