		Total	K+E Ito
11thPhysics(2018-19) 4thQ MiniTest	Student	34	16 19
	average	28,5/50	28.1/50 28.9/50
	Best	42.5/50 (3 students)	42.5/50 42.5/50

11th Physics (2018 – 19)

(4thQ, #1 Mini Test)

Class	No.	Name
-------	-----	------

In a calculation problem, describe equations clearly and systematically enough to show how to solve the problem. If not enough, you won't get any points.

Gravitational acceleration rate g = 9.80 m/s

4 pt/question x 13 questions = 52 pt Max 50 pt

/[Total 50 pt]

1 Keio Academy of New York

4/18/2019

(1) You dribble a basketball with a frequency of 1.8 Hz.

(1-a) What is the period of the dribble?

(1-b) How long does it take for you to complete 15 dribbles? (Equations)

(a)
$$T = \frac{1}{f} = \frac{1}{1.5} = 0.556 \rightarrow 0.56$$

(1-b) Answer

(89%)

(2) When a 0.830-kg mass is attached to a vertical spring, the spring stretches by 17.6 cm. What is the frequency of oscillation of this spring?

(Equations)

$$\hat{R} = \frac{F}{x} = \frac{mg}{x} = \frac{0.830 \times 9.80}{0.176}$$

$$= 46.216$$

$$T = 2\pi\sqrt{\frac{m}{E}} = 2\pi\sqrt{\frac{0.830}{46.216}} = 0.8421$$

$$f = \frac{1}{T} = \frac{1}{0.8421} = 1.187 \rightarrow 1.19$$

$$\vec{R} = \frac{mg}{2\pi}$$

$$\vec{T} = \frac{1}{2\pi} \sqrt{\frac{R}{m}}$$

$$= \frac{1}{2\pi} \sqrt{\frac{\frac{m}{72}}{m}} = \frac{1}{2\pi} \sqrt{\frac{g}{\chi}}$$

$$= \frac{1}{2\pi} \sqrt{\frac{9.80}{0.17b}} = 1.197 \rightarrow 1.19$$
Keio Academy of New York

1.19 Hz

(85%)

4/18/2019

11thPhysics(2018-19) 4thQ MiniTest

The direction of the wave

Use two significant figures in this page

- (3) You are enjoying boat-fishing at sea and moving up and down on periodic waves. You are periodically on the crest of the wave at the rate of every 8.5 seconds.
- (3-a) What is the frequency of the wave?
- (3-b) As the wave moves to the left, you, at P on the wave, are moving towards which position, A~D?

(a)
$$f = \frac{1}{T} = \frac{1}{8.5} = 0.118 \rightarrow 0.12$$

(b)

- $(4\sim5)$ In the figure below, the solid and broken lines represent the wave at t=0 s and t=0.40 s, respectively. Find the followings:
- (4-c) Wavelength
- (4-d) Frequency
- (5-e) Speed
- (5-f) The points that are out-of-phase with the point B.

(Equations

(e)
$$v = \frac{2.0 \text{ m}}{0.40 \text{ s}} = 5.0 \text{ m/s}$$

(d)
$$v = f\lambda$$
 $f = \frac{v}{\lambda} = \frac{5.0}{8.0} = 0.625 \longrightarrow 0.62$

3 Keio Academy of New York 4/18/2019

- (6) Two waves are superposed as shown. Draw the resultant pattern formed by the superposition of the two waves.
- (6) Answer Draw in the figure below.

(78%)

(7) Two pulse waves move at the speed of 1 cm/s as shown. Draw the pattern of the waves after 2 seconds.

(7) Answer

Draw in the figure.

(80%)

(8) A pulse approaches toward a fixed end Q with a speed of 1.0 cm/s. Draw the pattern for the wave at a time 5.5 seconds later.

(8) Answer

Draw in the figure at the left.

(43%)

- (9) A tsunami travelling across deep water can have speed of 800 km/h and a wavelength of 340 km.
- (9-a) What is the frequency of such a wave?
- (9-b) What is the period of the wave?
- (Equations)

$$V = 820 \, \text{km/f} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{1 \, \text{f}}{3.6 \times 10^3} = \frac{820}{3.6}$$

$$\lambda = 3.4 \times 10^5 \, \text{m}$$

$$= 228 \, \text{m/s}$$

$$y = \pm \lambda$$

$$f = \frac{\lambda}{\lambda} = \frac{228}{3.4 \times 10^5} = 67.0 \times 10^5 [H_8]$$

$$T = \frac{1}{7} = \frac{1}{67.0 \times 10^{5}}$$

(9-b) Answer

(38%)

6.70×10 4 Hz

5 Keio Academy of New York 4/18/2019

11thPhysics(2018-19) 4thQ MiniTest

(10) The figure shows a standing wave of a string 1.20 m long and at a frequency of 1200 Hz (1.20 x 10^3 Hz).

(10-b) What is the wavelength of the standing wave?

(10-c) What is the fundamental frequency?

(10-d) Find the speed of wave on this string.

Equations

(a)

$$(b) \frac{\lambda}{2} \times 4 = 1,20$$

$$\lambda = \frac{1,20}{2} = 0.600$$

(e)
$$v = f\lambda$$

= 1,20×10³ × 0.600
= 0.720,0 [m/s]
 $\lambda_1 = 2L = 2.40$ [m]
 $f_1 = \frac{v}{\lambda_1} = \frac{719.0}{2.40} = .300.0$

(10-a) Answer	Node	5
	Antinode	4
(10-b) Answer		
	0.60	o m
(10-c) Answer		
	300	o Hz
(10-d) Answer		
	721	n/5

(54%)

(d)

11thPhysics(2018-19) 4thQ MiniTest

(11) The figure shows the graph of a longitudinal wave expressing as a transverse wave.

(11-a) Which points are in the highest density?

(11-b) Which point has the speed of zero?

(11-c) Concerning the point P, show its location in the original longitudinal wave by a black circle.

0	
(T	
C.	C. G

(11-b) Answer

(11-c) Answer

Draw in the figure below.

(38%)

(12) The figure below shows the wave fronts of a wave of 3.0 m wavelength traveling from a medium 1 to another medium 2. The wave travels at 3.0 m/s and 2.0 m/s in the medium 1 and 2, respectively. (12-a) Find the relative refractive index of the medium 2 with respect to the medium 1. (12-2) Find the wavelength of the refracted wave. (12-c) Illustrate the wave front of the refracted wave.

Equations
$$M_{1\to 2} = \frac{v_1}{v_2} = \frac{3.0}{2.0} = 1.5$$

$$N = \frac{\lambda_1}{\lambda_2} \qquad \lambda_2 = \frac{\lambda_1}{n} = \frac{3.0}{1.5} = 2.0$$

(12-a) Answer 1.5

(12-b) Answer

2,0 m

(12-c) Answer

Illustrate in the figure. 図中に描け

(35%)

7 Keio Academy of New York

4/18/2019

(Equations)

The two is-phase sounds traveling to opposite direction make a standing ware

$$\frac{\lambda}{4} = 0.25 \text{ m} \implies \lambda = 1.0 \text{ m}$$

$$f = \frac{V}{\lambda} = \frac{343}{1.0} = 343 \implies 340 \text{ Hz}$$

$$|l_1 - l_2| = \frac{\lambda}{2} (2m+1)$$

$$2.25 - 1.75 = 0$$

$$0.50 = 0$$

$$m = 0 \quad \lambda = 1.0$$

$$m = 0$$
 $\lambda = 1.0$
 $m = 1$ $\lambda = \frac{1}{3}$
 $\frac{\lambda}{4} = \frac{1}{12}$
 $\frac{\lambda}{4} = \frac{1}{12}$