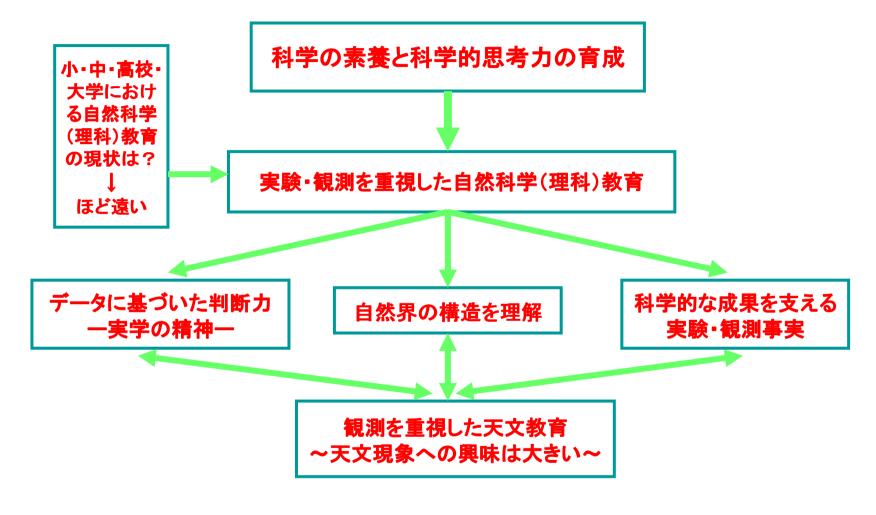
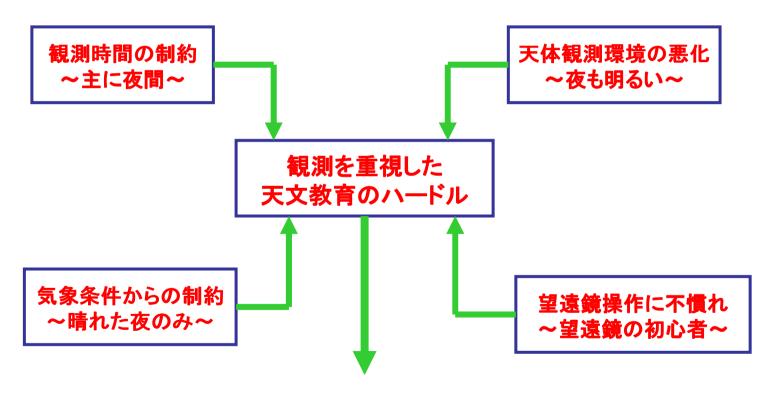

インターネット望遠鏡ネットワーク を利用した天体観測


~何時でも、誰でも、何処でも~

IT設置地点(NY・府中・ミラノ・秋田)

暗い地域は夜・明るい地域は昼

プロジェクトの理念



観測を重視した天文学教育実践 には幾つかのハードルがある

プロジェクトの目的

~観測を重視した天文教育の実現に向けて~ 天文教育実施における幾つかの困難

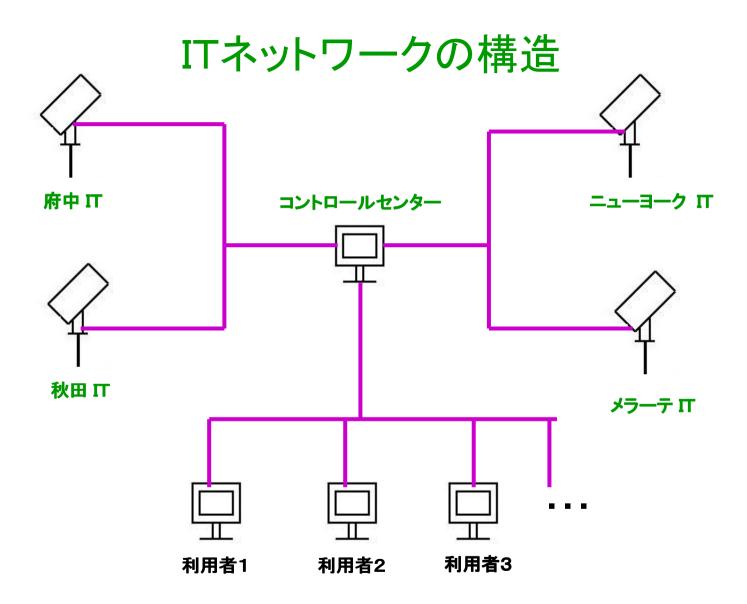
困難克服に向けた環境整備の必要性

何時でも、何処でも、誰でも

~インターネット望遠鏡を利用した天体観測~

何時でも --24時間・日中でも--時差を利用 何処でも 一国内外・教室・自宅ー インターネット利用

インターネット望遠鏡ネットワーク (ITP)


ホームページ

誰でも 一望遠鏡初心者でも一 天体自動導入機能

教育現場における天体観測の3つのハードルを除去

望遠鏡操作画面

利用者はコントロールセンター経由で利用したいITに接続

ハード面での実績と課題

実績

府中(五藤光学研究所)にIT設置(2003?) ピラミッド型ガラスドーム→開閉式ドーム 開閉式ドームの開発(2011) 口径20cm 経緯台→赤道儀

NY(**慶應義塾NY学院**)にIT設置(2004) ピラミッド型ガラスドーム 口径20cm 赤道儀

メラーテ(ミラノ・ブレラ天文台)にIT設置(2009) 開閉式ドーム(改良) 口径30cm

秋田(秋田大学)ITネットワーク参入予定(2011) 開閉式ドーム(改良) 口径30cm

課題

開閉式ドームー雨対策ー

専用架台の開発 一時刻認識の安定化一

ケーブルの巻き付きー解決済みー

画像のカラー化 ーソフト面も関連ー

IT設置場所と設置台数の増加 一南半球を含めて一 新しい設置方式(秋田大)

ソフト面での実績と課題

望遠鏡コントロールネットワークの構成

ソフト面の課題

ユーザーインターフェイス開発

天体自動導入機能 クイックセンターリング機能 分離角測定機能 星図と天体名ナビゲーション機能 気象情報表示機能 練習用ページ機能

望遠鏡使用マニュアルの改訂 教材テーマとそのマニュアルの充実化 学校教育現場への普及 (ワークショップ・シンポジウム開催) (ITP利用講習会の開催) プラネタリウムとの協力関係構築

望遠鏡操作インタフェイス

望遠鏡コントロール機能 リモートアライメント機能 サーバー電源リモートon/off機能

プロジェクトの課題

• 財政面

プロジェクト推進資金確保とその安定化

ITP維持·運営費

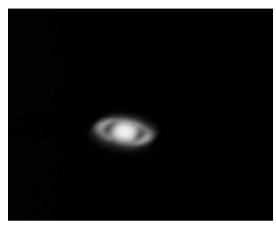
ITP設置台数の拡充

ハード・ソフト面のバージョンアップ

シンポジウム・ワークショップ開催等の活動費

専属職員雇用費

• 構成メンバーとその所属機関の拡充


インターネット望遠鏡プロジェクト 参加者所属機関

慶應義塾大学 慶應義塾自然科学研究教育センター 五藤光学研究所 東北公益文科大学 秋田大学 防衛大学校 富山県立大学 ブレラ天文台(イタリア・ミラノ市) 秋田県立横手清陵学院高校 西宮市立上ヶ原南小学校

ITPサポーター 企業・個人

インターネット望遠鏡で撮った天体画像例

木星 土星

ミラノの月 2009年8月6日

アンドロメダ銀河@ミラノ