Physics Laboratory Report

Title 表題

Forces in Equilibrium

Author 著者	Class	No.	Name 氏名	Meguni Kinjo
--------------	-------	-----	------------	--------------

Co-workers 共同実験者 Satako Kanino

Summary

to ascertain that the net force made from several forces in equilibrium is zero, we did this experiment using a force table. In this experiment, we put different neights in 3 or 4 harges and balance them. Using the angles of the wives at the equilibrium and weight data, we drew figures by parallelogram method and there to tail method to calculate R+B+E+D, mathematical

Addition/Correction 追加/修正

- · Meet a deadline · Write logically · Write clearly · Write with your own words
- 締切り守って ・論理的に ・わかりやすく ・自分のことばで

東鉄、解析・作図ともに正確、こい知いに東地している。3方は正ならかっしなートしたのはすばらしく良い、3方は正定量好に比較すればも、と思か、た。 すぐれなしホートです

^{*} Write your report in Japanese or in English * Use this form as a front cover.

^{*} Submit your reports by the seventh day after your lab. You can add to or correct your report: note when you have done this.

Introduction

- 1. Objectives
 - To ascertain that the net force made from several forces in equilibrium is zero by using a force table.

2. Theory

The net force of all the forces acting on three or four wires is zero.

$$\vec{A} + \vec{B} + \vec{C} + \vec{D} = 0$$

Experiment

- 1. Apparatus
 - · Force Table
 - Wires
 - Pulleys
 - Hangers
 - Ring
 - · Graph Paper
 - Ruler
 - Circular Protractor
 - Weights

2. Methods

① Set the force table with pulleys, wires (A-D), rings, and hangers.

2 Put different weights in three or four hangers.

- 3 Set one of wire A at 0 on the force table.
- 4 Change the positions of the other wires to let the ring be at the center and balance all of the wires.
- ⑤ Read the angle of the wires on the force table.
- 6 Make a table of weight (kg), Newton (N), and angle (degree).
- Make figures on the graph paper using parallelogram method and head-to-tail method.
- 8 Change the types of weights and do the same thing.
- Find the net force at the unbalanced state.
- ① Do mathematical analysis and compare it to the figures.

Results

Test1

Table1-1	Kg	N	Angle
A	0.1	0.98	0°
В	0.05	0.49	131°
C	0.07	0.69	214°

① Figuring Analysis

[Parallelogram Method] Fig.1-1

If they were balanced, the two lines of net force would have the same length and would be on the opposite sides.

3 方法を対けしたのが大変良い

[Head-to-Tail Method] Fig.1-2 If they were balanced, the tail of \vec{C} line would reach the top of \vec{A} line.

② Mathematical Analysis

Table1-2	F [N]	θ[°]	$F_x = F \cos \theta$	$F_y = F \sin \theta$
			[N]	[N]
A	0.98	0°	0.98	0
В	0.49	131°	-0.321	0.370
C	0.69	214°	-0.572	-0.386
		$\sum F_x$, $\sum F_y$	0.087	-0.016

If they were completely balanced, $\sum F_x = 0$, $\sum F_y = 0$.

Test2

Table2-1	Kg	N	Angle
A	0.15	1.47	0°
В	0.05	0.49	132.5°
С	0.05	0.49	179.1°
D	0.06	0.59	218.5°

① Figuring Analysis

[Parallelogram Method] Fig.2-1

[Head-to-Tail Method] Fig.2-2

② Mathematical Analysis

Table2-2	F [N]	θ[°]	$F_x = F \cos \theta$	$F_y = F \sin \theta$
			[N]	[N]
A	1.47	O°	1.47	0
В	0.49	132.5°	-0.331	0.361
C	0.49	179.1°	-0.490	0.008
D	0.59	218.5°	-0.462	-0.367
		$\sum F_x$, $\sum F_y$	0.187	0.002

Tset3

Table3-1	Kg	N	Angle
A	0.2	1.96	0°
В	0.2	1.96	75.5°
C	0.16	1.568	159°
D	0.275	2.695	246°

① Figuring Analysis

[Parallelogram Method] Fig.3-1

[Head-to-Tail Method] Fig.3-2

② Mathematical Analysis

Table3-2	F [N]	θ[°]	$F_x = F \cos \theta$	$F_y = F \sin \theta$
			[N]	[N]
A	1.96	0°	1.96	0
В	1.96	75.5°	0.491	1.898
C	1.568	159°	-1.464	0.562
D	2.695	246°	-1.096	-2.462
		$\sum F_x$, $\sum F_y$	-0.109	-0.002

Test4

Table4-1	Kg	N	Angle
A	0.05	0.49	0°
В	0.05	0.49	36°
C	0.3	2.94	164°
D	0.215	2.107	323°

① Figuring Analysis

[Parallelogram Method] Fig.4-1

[Head-to-Tail Method] Fig.4-2

② Mathematical Analysis

Table4-2	F [N]	θ[°]	$F_x = F \cos \theta$	$F_y = F \sin \theta$
			[N]	[N]
A	0.49	O°	0.49	0
В	0.49	36°	0.396	0.288
С	2.94	164°	-2.826	0.810
D	2.107	323°	1.683	-1.268
		$\sum F_x$, $\sum F_y$	-0.257	-0.170

Discussion

 In the parallelogram method figure, the two lines of net force have almost the same length and are on the opposite sides.

[Test1]
$$\vec{A} = -(\vec{B} + \vec{C})$$

 $\vec{A} + \vec{B} + \vec{C} = 0$
[Test2-4] $\vec{A} + \vec{B} = -(\vec{C} + \vec{D})$
 $\vec{A} + \vec{B} + \vec{C} + \vec{D} = 0$

Percent Error Example

[Test1]

Length:
$$\frac{|0.98N - 0.91N|}{0.98N} \times 100\% = \frac{0.07N}{0.98N} \times 100\%$$

=7.14%
Angle: $\frac{|180^{\circ} - 181^{\circ}|}{180^{\circ}} \times 100\% = \frac{1^{\circ}}{180^{\circ}} \times 100\%$
=0.556%

- In the Head-to-Tale method figure, the tail point of \(\vec{C} \) line almost reaches the top point of \(\vec{A} \) line.
 - \rightarrow The difference between the tail point of \vec{C} line and the top point of \vec{A} line is $\vec{A} + \vec{B} + \vec{C} + \vec{D}$, meaning $\vec{A} + \vec{B} + \vec{C} + \vec{D}$ is not zero.
- In the mathematical analysis, $\sum F_x$ and $\sum F_y$ are almost zero.
- ⇒ Net force made from some forces in equilibrium is zero.
- The net forces are not exactly zero.

There are slight differences because:

- We thought the ring was at the center, but actually it was not the center.
- Read the angle on the force table roughly.
- ✓ Differences occur when I round off the values.

Conclusions

The net force made from several forces at equilibrium is zero.

$$\vec{A} + \vec{B} + \vec{C} + \vec{D} = 0$$
 at equilibrium

Opinions

In this experiment, it was difficult to find the angles where the ring becomes the center. Before doing this experiment, I could not imagine the state of $\vec{A} + \vec{B} + \vec{C} + \vec{D} = 0$. However, conducting this experiment, I understood very well what kind of state it is when $\vec{A} + \vec{B} + \vec{C} + \vec{D} = 0$.

Reference

Lab Reports by Tamano Yano (2013)