	/
Date of Lab	9/37
Date of Lab	1

Date of Submission_0/6

Laboratory Report

Title Analyzing the motion of Dynamics Cart with a Spark Timer.

Homeroom	Section		, 1	and the second s
11-E		Name	Kakeru	1-10

Lab Partners Juichi Watanake

Summary

We recorded and analyzed the acceleration the slope by using a spark timer. We also changed the slope, and the weight of the Cart, and recorded & analyzed the data In this experiment we saw that the angle of the slope was directly proportional to the acceleration rate but the weight affected accelerate only a little. In addition, because the shape of w-1 graph was a straight line, it is constant accelerated motion.

· Meet a deadline · Write logically · Write clearly · Write with your own words

A good summary. Beautiful and clear Englisti. Teacher's Comments The table summingup data is very good

1	2	3	4	5	6	7	8	9
Due	Summary	Intro.	Method.	Results	Table/Fig.	Discussion	Clearness	General
+	++				++	+	+	++

Use this form as a cover sheet.

Submit your reports by the seventh day after your lab.

Analysis of Accelerated Motion Using Spark Timer

Introduction

Purpose:

This experiment was held in order to analyze how the angles of slope and the weight affect the acceleration rate by using a spark timer and dynamics cart.

Theory:

The cart runs on the straight line with constant acceleration. So it is a constant accelerated motion.

In this experiment, I use the following equations to find average acceleration rate;

- 1) $a = \Delta v / \Delta t$
- 2) $V=V_0+at$
- 3) $x=1/2at^2+V_0t$
- 4) $V^2 V_0^2 = 2ax$

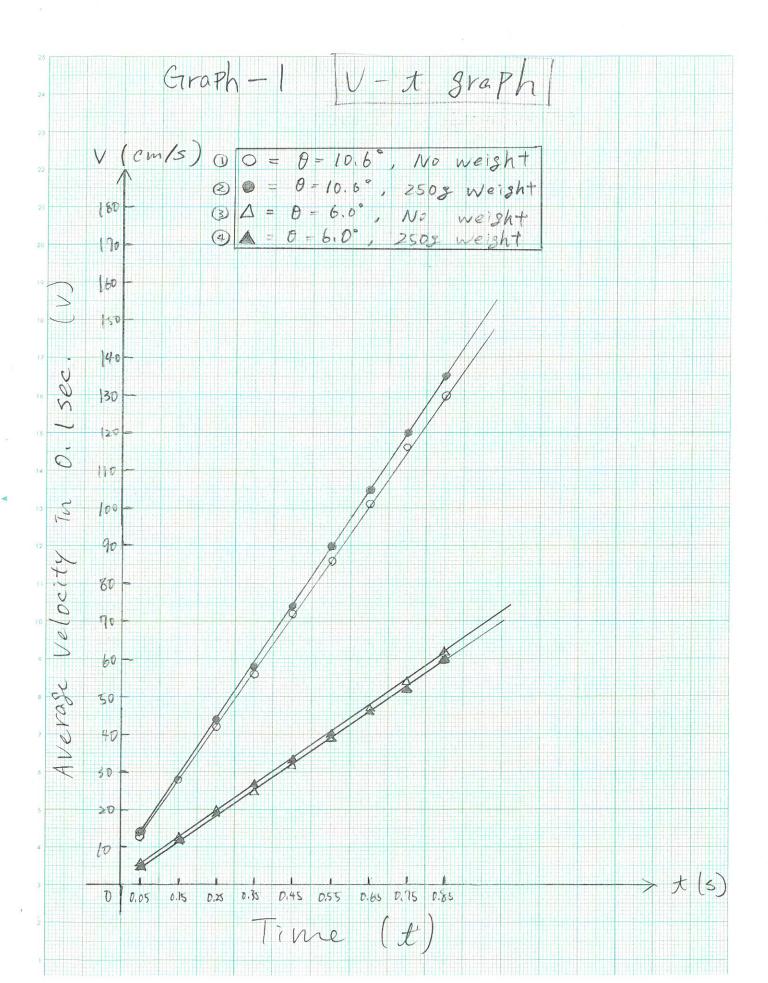
Hypothesis:

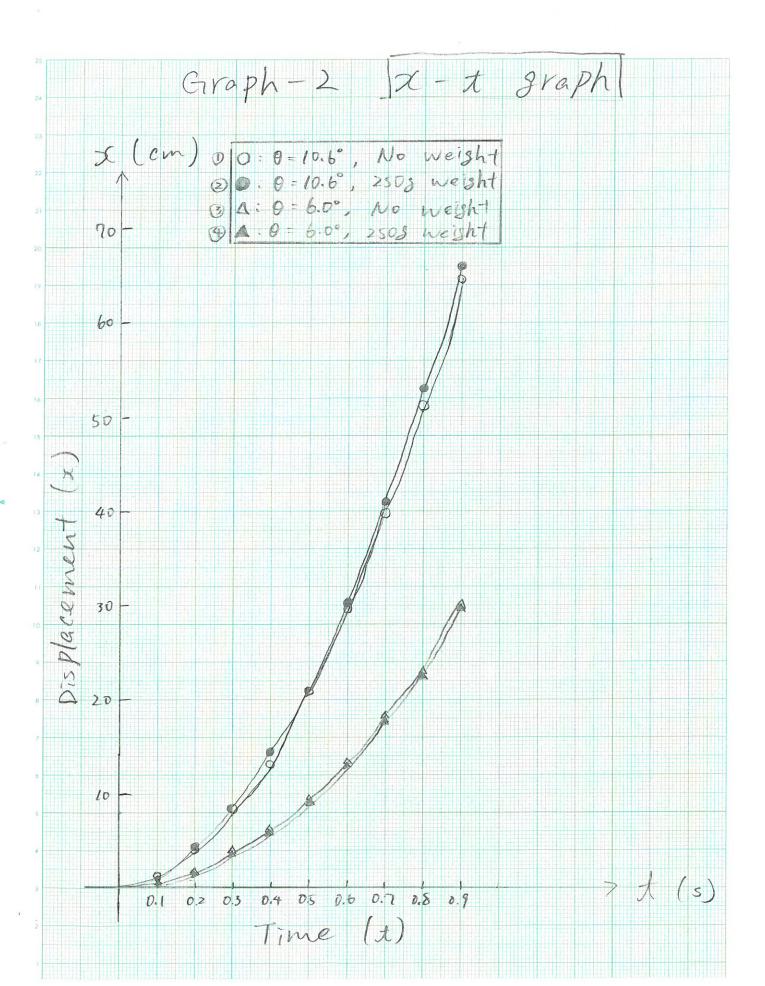
The weight of the cart and the angle of the slope are both directly proportional to its acceleration rate.

Experimental Design:

In this experiment, I provide two different weights of dynamics cart and two different angles of the slope, which means I would have four different situations;

- 1) Less weight; Less slope
- 2) Less weight; More slope
- 3) More weight; Less slope
- 4) More weight; More slope


Experiment;


Preparation;

Dynamics cart (500g), Weights (250g), Track, Ruler, Thermal Recording Tape, Extension cord, scissors, glue, graph paper, spark timer.

Procedure;

- 1) Set up a track with a certain angles.
- 2) Measure the height and length of the track, and calculate the angle by using tangent.
- 3) Put the thermal recording tape, about the length of a yard, on the dynamics cart and the spark timer.
- 4) Turn on the power of the spark timer and make the cart run down the slope. Be sure to make it run down naturally. The initial velocity has to be 0.
- 5) Turn off the power and look at the recording tape.
- 6) Divide it into some pieces so that each of them have 6 dots, and analyze it.
- 7) Take the same procedure for the other three situations; the same slope and more weight, more slope and no weight, more slope and more weight.

Result	
PhysicsLab-001	Analyzing

Displacement X	Example				9: -												
Displacement per 0.100 s	Time t	[s]	0	0.1			0.3	300	0.400	0.5	00	0.600	0.7	00 0.	800	0.900	
Normage velocity	Displacement x	[x 10 ⁻² m]	0	2.3	35	6.25	11.6	65 1	8.60	27.1	5 3	7.24	48.8	5 61	.95	76.65	1
Simple at central point	Displacement per 0.100 s	Δx [x 10)-2 m] 2	2.35				6.95	8.5	5	10.09	11.	61	13.10	14.7	0	
Condition: $0 = 10.6^{\circ}$, No weight $0 = \frac{30 - 13}{0.85 - 0.05} = \frac{117 - 8}{0.35 - 0.05}$ and 14.6° are 1.6° and 1.6° are	Average velocity	v [x 10 ⁻² 1	m/s] 2	23.5	39.0	54.	0	69.5	85.	5	100.9	116	3.1	131.0	147.	0	
Condition: $0 = 10.6$, $0 = 10.6$, $0 = 10.5$, $0 = 1$	Time at central point	t [[s] C).05	0.15	0.2	5	0.35	0.4	5	0.55	0.6	5	0.75	0.85		
Signal S	Condition:	= 10.6	9		Vo	We	zis	ht		a		1	-	- = 5	-	= 114	16
Displacement per 0.100 s	Time t	[s]	O	0.	1	0.2	0.	3 1	D.C	D.	3	0-6	0.7	Z	8	0.9	
werage velocity $v \ [x \ 10^2 \ m/s] \ [S \ 28 \ 42 \ 56 \ 72 \ 86 \ 70 \ 77 \ 73 \ 74 \ 73 \ 74 \ 73 \ 74 \ 74$	Displacement x	[x 10 ⁻² m]	0	1	3 4	4.1	8	3 1	3.9	21.	1 2	19.7	39.9	8 5	1.4	64.4	
werage velocity $v \ [x \ 10^2 \ m/s]$ $[3] \ 28 \ 42 \ 56 \ 72 \ 86 \ / b \ 11 \ / 50 \ 12 \ 12 \ 12 \ 13 \ 13 \ 13 \ 13 \ 13 \ 13 \ 13 \ 13 \ 14 \ 13 \ 14 \ 14 \ 13 \ 14 \ 14 \ 13 \ 14 \ 14 \ 13 \ 14 \ $	Displacement per 0.100 s	Δ <i>x</i> [x 10	-2 m]	1.3	2.8	4	.2	5.6	7	. 2	8.6	0 10	. /	11 6	13.	0	
Sime at central point f [s] 0.05 0.15 0.25 0.35 0.45 0.55 0.66 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75	Average velocity	<i>v</i> [x 10 ^{⋅2} r	m/s]	13	28	4	2	56	T	2	X B	1	ī	112	131	>	
Condition: $\theta = 10.6^{\circ}$, 2503 weight $\theta = \frac{135 - 14}{0.55 \cdot 0.65} = \frac{1.5 \text{ Im}}{0.85 \cdot 0.85} = \frac{1.5 \text{ Im}}{0.85 \cdot 0.65} = \frac{1.5 \text{ Im}}{0.85 \cdot 0.85} = \frac{1.5 \text{ Im}}{0.85 \cdot 0.85 \cdot 0.85} = \frac{1.5 \text{ Im}}{0.85 \cdot 0.85} = \frac{1.5 \text{ Im}}{0.85 \cdot 0.85 \cdot 0.85} = \frac{1.5 \text{ Im}}{0.85 \cdot 0.85} = \frac{1.5 \text{ Im}$	Time at central point	t [s] 0	0.05				0.31	D.		0.5	5 0	LE	0.75		τ .	
Condition: $0 = 10.6$, 0.5000 , 0.8500 , 0									-		12	35 - 10	4	1,212	1 11/4		J
Time t [s] \cap 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	(2) Condition: 0 =	10.6	,	23	503	+ 1	NE	ish	1	a	-	-	707	-	-	1.5	m
Displacement x [x 10 ² ml] 0		[s]	D	0.	1 8	7. 7	0	7 /	24	0		n h	7).1	ח ה		0.9	
Displacement per $0.100 s$	Displacement x	[x 10 ⁻² m]		1.4	4 4	4,2	8.	6 1	4.4	71	8 3	0.8	41 :	2 (2		66.8	
werage velocity $v = [x + 10^2 \text{ m/s}]$ $v =$	Displacement per 0.100 s	Δx [x 10		1					7)								ĺ
Time at central point f [s] 0.05 0.15 0.25 0.35 0.45 0.15 0.65 0.75 0.85 0.85 0.75 0.85 0.85 0.75 0.85 0.85 0.75 0.85	Average velocity			1/1	28	_	-		-		-10	10				77.77	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			_	M	0 15	1	-		,	-	10			-	,		
isplacement x [x 10 ² m] D 0.6 [.9 3.7 6.4 9.6 [3.5 [8.2 23.6 29.8]] isplacement per 0.100 s Δx [x 10 ² m] D 6 [.9 3.7 6.4 9.6 [3.5 [8.2 23.6 29.8]] isplacement per 0.100 s Δx [x 10 ² m] D 6 [3.3 2.0 2.5 3.2 3.9 4.7 5.4 6.2] ime at central point t [s] D 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.75 0.85 D 13 20 33 32 39 417 54 6.2 ime at central point t [s] D 0.7 0.2 0.3 0.4 0.3 0.6 0.7 0.8 0.9 ime t [s] D 0.5 1.7 3.6 6.3 9.6 13.6 [8.2 23.5 29.5] isplacement t [x 10 ² m] D 0.5 1.7 3.6 6.3 9.6 13.6 [8.2 23.5 29.5] isplacement per 0.100 s Δx [x 10 ² m] D 0.5 1.7 3.6 6.3 9.6 13.6 [8.2 23.5 29.5] implacement per 0.100 s Δx [x 10 ² m] D 0.5 1.7 3.6 6.3 9.6 13.6 [8.2 23.5 29.5] implacement t [s] D 0.5 0.15 0.25 0.35 0.45 0.55 0.75 0.85		6.0°		No			sh-	+ 1	^	62	The state of the s			-	1		1
isplacement per 0.100 s $\triangle x$ [x 10 ² m] \bigcirc .6 .3 2.0 2.5 3.2 3.9 4.7 5.4 6.2 verage velocity v [x 10 ² m/s] \bigcirc .6 .3 2.0 3.5 3.2 3.9 4.7 5.4 6.2 ime at central point v [s] $\langle v \rangle $				0	-		D.	3 1	1.4	0.	5 0	2.6	0.	70	٠ ک	0.9	i
verage velocity v [x 10 ² m/s] 6 13 20 35 32 39 49 54 62 ime at central point t [s] 0.05 0.15 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.2				0.			2	L - t	2 1 1				10		5.6.	29.8	
ime at central point t [s] 0.05 0.15 0.25 0.35 0.45 0.05 0.05 0.05 0.085 Condition: $\theta = 6.0^{\circ}$ 0.05 0.15 0.25 0.35 0.45 0.35 0.45 0.05 0.05 0.085 ime t [s] 0 0.1 0.2 0.3 0.4 0.3 0.6 0.7 0.8 0.9 isplacement x [x 10^2 m] 0 0.5 1.7 3.6 6.3 9.6 13.6 18.2 23.5 29.5 isplacement per 0.100 s Δx [x 10^2 m] 0.5 1.2 1.9 2.7 3.3 4.0 4.6 5.3 6.0 we rage velocity v [x 10^2 m/s] 5 6 12 19 19 19 19 19 19 19 19		ACTIVITY AND ACTIVITY).6		2.	0	2.5				4.	7	-	6.3)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				6	1 4						39	4	7	1	62		
Condition: $f = b$.	Time at central point	t [s	s] [b	, 05	0.15	0.5	5	0.35	Dis	45 1	2,56	0.6	5 (0.75	0.8		· printerior and
Tisplacement x [x 10 ² m] 0 0.5 [.7] 3.6 6.3 9.6 [3.6 [8.2] 23.5 [29.5] isplacement per 0.100 s Δx [x 10 ² m] 0.5 [.2] [1.9] 2.7 3.3 4.0 4.6 [5.3] 6.0 werage velocity v [x 10 ² m/s] 5 [2] [1.9] 2.7 3.3 4.0 4.6 5.3 6.0 ime at central point t [s] 0.05 0.15 0.25 0.35 0.45 0.55 0.75 0.85 Condition: The second state of the control of t	Condition:	= 6.0°	, 2	30	8	W.	e ic	shi	10	$l = \frac{1}{a}$	60- 1.85-0	5 =	0.55	-	=	0.69	m
isplacement per $0.100 \mathrm{s}$ $\Delta x [x 10^{\circ 2} \mathrm{m}]$ $0.5 [. \geq 1. 9]$ $2.7 3.3 4.0 4.6 4.6 5.3 6.0$ verage velocity $v [x 10^{\circ 2} \mathrm{m/s}]$ $5 [2 1. 9]$ $2.7 3.3 4.0 4.6 5.3 6.0$ ime at central point $t [\mathrm{s}]$ $0.05 0.15 0.25 0.35 0.45 0.35 0.65 0.75 0.85$ Condition: ime $t [\mathrm{s}]$ isplacement $x [x 10^{\circ 2} \mathrm{m}]$	Time t	[s]	0	0)./ (0,2	0.	3 6).4	0.3	0	.6	0,	70	18	0.9	
verage velocity v [x 10 ² m/s] 5 12 19 27 33 40 46 53 60 ime at central point t [s] 0.05 0.15 0.25 0.35 0.45 0.55 0.75 0.85 Condition: ime t [s] isplacement x [x 10 ² m]	Displacement x	[x 10 ⁻² m]	0	0.3	5 1	-		6 6			5 1	3.6	18.	2 23	1,5	29.5	
verage velocity v [x 10 ² m/s] 5 12 19 27 33 40 46 53 60 ime at central point t [s] 0.05 0.15 0.25 0.35 0.45 0.55 0.75 0.85 Condition: ime t [s] isplacement x [x 10 ² m]	Displacement per 0.100 s	Δx [x 10]	2 m] [0	3,	1,2	1.	9	2:7	3.	3	4.0	4	.6	5.3	6.	D	
Condition:	Average velocity	$v = [x \ 10^{-2} \ n]$	n/s]	5	12	1	9		3.	3	40	46	5		60	>	
Condition: ime t [s] $\qquad \qquad \qquad$	Time at central point	<i>t</i> [s	s] D	.05	0.15	0.2	5	0.35	0.4	43	0.53	0.1	55 1	0.75	0.8	5	
ime t [s] isplacement x [x 10^{-2} m]																	
isplacement $x = [x \ 10^{-2} \ m]$	Condition:				,												
	Time t																
	Displacement x	[x 10 ⁻² m]							1076/6/12								
isplacement per 0.100 s Δx [x 10^{-2} m]	Displacement per 0.100 s	$\Delta x = [x \ 10]$	2 m]														
verage velocity $v \text{ [x 10-2 m/s]}$	Average velocity	<i>v</i> [x 10 ⁻² m	n/s]														
ime at central point t [s]	Time at central point	t [s	s]														

Analyzing the Motion of Dynamics Cart with a Spark Timer

A nice table

T	-		
LACI	- I	+	•
Resi		I.	٠

Ttcburt,		Mass	5	NAME OF THE PERSON OF THE PERS
Experiment	Angle (°)	Weigh		Acceleration Rate (m/s²)
1	10.6	0	500	$\frac{1.46\text{m/s}^2}{}$
2	10.6	<u>250</u>	750	1.51m/s ²
3	6.0	0	500	0.70m/s ²
4	6.0	<u>250</u>	750	0.69m/s ²

Discussion;

As you can see from the graph and the data table, the acceleration rates of Experiment① and Experiment② are almost identical to each other, even though the cart's weight is different. Additionally, the acceleration rates of Experiment① and Experiment② are also almost the same, regardless of their carts' weight. This proves that the weight of the cart doesn't affect its acceleration rate significantly.

On the other hand, when I changed the slope of the track on which the cart runs, the acceleration rate of the cart was also changed. Steeper the slope is, the greater the acceleration rate is. For example, Experiment 1 and 3 have different slope, the same weight, and different acceleration rate.

In addition, it can be said that the all motions of the dynamics cart observed in Experiment 1, 2, 3, and 4, are constant accelerated motion because the v-t graph shows four straight lines.

Although the weight of the object affects its acceleration rate insignificantly, I could see slight difference between the results. I think this is because of the effect of the air resistance and the friction between the tire of the cart and the track.

Conclusion;

The weight of the object does not affect its acceleration rate, and the angle of slope is directly proportional to its acceleration rate. Therefore, my hypothesis was rejected. Because of the air resistance and friction I technically couldn't obtain the accurate results, but I could figure out how the weight of the object and the angle of the slope affect its acceleration rate.

Opinion;

I learned how to utilize the knowledge that I obtained in class in the real situation through this experiment. And I was also surprised that my hypothesis wasn't right. I thought that the weight has something to do with its acceleration rate.