#### Laboratory Report

Title 表題

Forces in Equilibrium

| Homeroom | Section | Name       |                       |  |
|----------|---------|------------|-----------------------|--|
|          | 2       | Name<br>氏名 | Chiaki Gardiner Nagai |  |
|          |         |            | OLLOWS MICHAEL LINGUI |  |

共同実験者

Lab Partners Hayuka Fushima

#### Summary

We investigated the forces in Equilibrium by using Force table In different angles & weights

After that we put the results into the graph and by using this results we drew a diagram using parallelogram method & head to tail method. There were some errors in the results but we learned that if the forces are balanced then resultant force will be almost 0 good summary

- Meet a deadline Write logically Write clearly Write with your own words
- ・締切り守って
  - ・論理的に
- ・わかりやすく ・自分のことばで

Teacher Comments

Jord tables and figures. It was good to compare net forces, but it would be bethe to compare angles, too.

| 1           | 2             | 3           | 4             | 5             | 6                 | 7                | 8                   | 9             |
|-------------|---------------|-------------|---------------|---------------|-------------------|------------------|---------------------|---------------|
| Due<br>提出期限 | Summary<br>要旨 | Intro.<br>序 | Method.<br>方法 | Results<br>結果 | Table/Fig.<br>表/図 | Discussion<br>考察 | Clearness<br>わかりやすさ | General<br>全般 |
| +           | +             |             |               |               | ++                | +                | + +                 | ++            |

Write your report in Japanese or in English \* Use this form as a cover sheet.

Submit your reports by the seventh day after your lab.

**Objective:** To confirm that the net force made from several forces in equilibrium is zero by using a force table.

**Hypothesis:** the net force of all the tensional forces acting on three (or four) wises is zero.

**Apparatus:** Force table, cords, pulleys, hangers, ring, graph paper, ruler, protractor

## **Experimental Procedure:**

- 1. Assemble a force table, as shown in the figure.
- 2. Put different amount of weights in three hangers.
- 3. One cord is set on  $0^{\circ}$  on the force table.
- 4. Relocate the other two cords/pulleys so that the ring is centered and the three forces are balanced by trial and error.
- 5. When the system is balanced, record the angles and the mass of weights in the table.
- 6. Calculate the magnitude of force. Obtain the length of an arrow expressing the magnitude of each force vector.
- 7. On graph paper, net force is obtained using the parallelogram method and using head to tail method.
- 8. Repeat the above using four hangers.
- 9. Repeat the above but the four forces are slightly off the balance. Obtain the net force.
- 10. Perform the component method and compare the results with the graph method.

# **Experimental Results**

### -3 hangers in equilibrium-

| Exp.1 | Weight(kg) | Force(N) | Arrow(cm) | Angle(°) |
|-------|------------|----------|-----------|----------|
| A     | 0.290      | 2.842    | 11.368    | 0        |
| В     | 0.200      | 1.960    | 7.840     | 226      |
| C     | 0.200      | 1.960    | 7.840     | 130      |

Xlength of an arrow 1N=4cm

| Ежр.1 | F(N)  | θ(°)                      | $Fx=F\cos\theta$ | Fy=Fsin $\theta$ |
|-------|-------|---------------------------|------------------|------------------|
| A     | 2.842 | 0                         | 2.842            | 0                |
| В     | 1.960 | 226                       | -1.362           | -1.409           |
| C     | 1.960 | 130                       | -1.259           | 1.501            |
|       |       | $\Sigma Fx$ , $\Sigma Fy$ | 0.221            | 0.092            |

 $F = 0.239N \theta = 22.60^{\circ}$ 

### -4 hangers in equilibrium-

| Exp.2 | Weight(kg) | Force(N) | Arrow(cm) | Angle(°) |
|-------|------------|----------|-----------|----------|
| A     | 0.220      | 2.156    | 8.624     | 0        |
| В     | 0.150      | 1.470    | 5.88      | 84       |
| С     | 0.100      | 0.980    | 3.92      | 180      |
| D     | 0.200      | 1.960    | 7.84      | 230      |

Xlength of an arrow 1N=4cm

| Exp.2 | F(N)  | θ (° )                    | $Fx=F\cos\theta$ | Fy=Fsin $\theta$ |
|-------|-------|---------------------------|------------------|------------------|
| Α     | 2.156 | 0                         | 2.156            | 0                |
| В     | 1.470 | 84                        | 0.154            | 1.462            |
| C     | 0.980 | 180                       | -0.980           | 0                |
| D     | 1.960 | 230                       | -1.259           | -1.501           |
|       |       | $\Sigma Fx$ , $\Sigma Fy$ | 0.071            | -0.039           |

 $F = 0.081N \theta = -28.78^{\circ}$ 

#### -4 hungers in slightly off balance-

| Exp.3 | Weight(kg) | Force(N) | Arrow(cm) | Angle(°) |
|-------|------------|----------|-----------|----------|
| A     | 0.220      | 2.156    | 8.624     | 0        |
| В     | 0.200      | 1.960    | 7.84      | 84       |
| С     | 0.100      | 0.980    | 3.92      | 180      |
| D     | 0.200      | 1.960    | 7.84      | 230      |

Xlength of an arrow 1N=4cm

| Exp.3 | F(N)  | θ(°)                      | $Fx=F\cos\theta$ | Fy=Fsin $\theta$ |
|-------|-------|---------------------------|------------------|------------------|
| A     | 2.156 | 0                         | 2.156            | 0                |
| В     | 1.960 | 84                        | 0.205            | 1.949            |
| C     | 0.980 | 180                       | -0.980           | 0                |
| D     | 1.960 | 230                       | -1.259           | -1.501           |
|       |       | $\Sigma Fx$ , $\Sigma Fy$ | 0.122            | 0.448            |

 $F = 0.464N \ \theta = 74.77^{\circ}$ 

### Discussion:

I compared the net force between the ones I solved by calculation and by solving from the graph.

Exp.2

Calculation→ 0.081N

graph→ 0.125N

 $|0.125\text{-}0.081|/0.081\times100\%{=}54.3\%$ 

Exp.3

Calculation→ 0.464N

graph→ 0.475N

 $|0.475-0.464|/0.464 \times 100\% = 2.37\%$ 

By these two results, you know that in Exp.2 I made an error, but in Exp.3 I almost didn't make any error. I was so close!!!

If the net force is zero then the force is equilibrium. But in this experiment we didn't get any zero.

That's because...

- -we thought the ring was center, but actually it wasn't. →this means the force are nor equal.
- -when we calculate, we round off. That cause our error.
- -when didn't read the angle of the force table properly.

### Conclusion:

If the net force made from 3 or 4 forces is zero then it means equilibrium.

 $\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C} = 0$ 

 $\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C} + \overrightarrow{D} = 0$  is

is at equilibrium!

# What I thought about this experiment...

In this experiment, I really used my brain because I had to concentrate on reading the angles from the force table, measure the length and find out the angle using protractor. So, after the experiment I was super tired. (tiredness that I have never experienced in my life). This experiment helped me understand the relationship between the force and equilibrium. I used my brain a lot but I really enjoyed this experiment as always.

### Reference:

Lab report by Rieko Shiozaki (2015) & Megumi Kingyo (2014)











