	10/10
Date of Lab	1/10

Laboratory Report

Title Force Table.

Homeroom	Section	Name	Miror	Miyosni	
----------	---------	------	-------	---------	--

Lab Partners Plna Kainara

Summary

Weights to bring it into equilibrium. | put this regults in the graph. Then using this result, | drew a diagram using the parallelogram method and the tlead-to-tail method. There were some errors, but I found that the net force will be zero when the forces are balanced.

 $\cdot \ \text{Meet a deadline} \quad \cdot \ \text{Write logically} \quad \cdot \ \text{Write clearly} \quad \cdot \ \text{Write with your own words}$

Teacher's Comments

Beautiful drawings and good analysis (only
one wrongs expressions of about angle in the math method)

The table of comparison is very good.

1	2	3	4	5	6	7	8	9
Due	Summary	Intro.	Method.	Results	Table/Fig.	Discussion	Clearness	General
					2.46			

Use this form as a cover sheet.

Submit your reports by the seventh day after your lab.

2 Introduction

- 1) Objective: To conform that net force made from several force in equilibrium is zero by using a force table.
- 2) <u>Hypothesis</u>: The net force of all tensional force acting on three (or four) wires is zero.
- 3) Apparatus: Force Table, Cords, Pulleys, Hangers, Ring, Graph paper, Ruler

3 Procedure

- 1) Assemble a force table, in the figure.
- 2) Put different amount of weights in three hangers.
- 3) One cord is set on 0°.
- 4) Three force are balanced by trial and error.
- 5) Record the angles and the mass of weights.
- 6) Calculate force in N. obtain the length of an arrow expressing the magnitude of each force vector.
- 7) On graph paper, net force is obtained using the parallelogram method and using head-to-tail method.
- 8) Repeat the above using four hangers.
- 9) Repeat the above but the four force are <u>slightly off the balance</u>. Obtain the net force.
- 10) Perform the math method and compare the results with the graph method. (Exp.1~3)

4 Result

(1) Table 1, three forces are balanced

Length of an arrow 1N = 3cm

Exp.1	Mass of Weight [kg]	Force [N]	Arrow [cm]	Angle [°]
A	0.2 kg	1.96N	5.88cm	0°
В	0.15kg	1.47N	4.41cm	85°
С	0.25kg	2.45N	7.35cm	212.5°

^{*}Force = mass \times gravitational acceleration = mass \times 9.80 m/s²

(2) Table 2, Four forces are balanced

Length of an arrow 1N = 3cm

Exp.2	Mass of Weight [kg]	Force [N]	Arrow [cm]	Angle [°]
A	0.3kg	2.94N	8.82cm	0°
В	0.2kg	1.96N	5.88cm	109°
С	0.25kg	2.45N	7.35cm	180°
D	0.2kg	1.96N	5.88cm	276°

^{*}Force = mass \times gravitational acceleration = mass \times 9.80 m/s²

(3) Table3, four forces are not balanced

Length of an arrow 1N = 3cm

Exp.3	Mass of Weight [kg]	Force [N]	Arrow [cm]	Angle [°]
A	0.3kg	2.94N	8.82cm	0°
В	0.2kg	1.96N	5.88cm	109°
С	0.3kg	2.94N	8.82cm	180°
D	0.2kg	1.96N	5.88cm	276°

^{*}Force = mass \times gravitational acceleration = mass \times 9.80 m/s²

(4) Table 4, Math Method of Exp.1

Exp.1	F	θ	$Fx = F\cos\theta$	$Fy = F\sin\theta$
unit	[N]	[°]	[N]	[N]
A	1.96	0	1.96	0
В	1.47	85	0.128	1.464
C	2.45	212. 5	-2.066	-1.316
		ΣΕχ, ΣΕγ	0.022	0.148

$$F = \sqrt{(\Sigma F x)^2 + (\Sigma F y)^2} = \sqrt{(0.022)^2 + (0.148)^2} = 0.149 \implies 0.15N$$

$$\theta = tan^{-1} \frac{\Sigma Fy}{\Sigma Fx} = tan^{-1} \frac{0.148}{0.022} = 81.54 \implies \underline{82}^{\circ}$$

OK

(5) Table 5, Math Method of Exp. 2

Exp.2	F	θ	$Fx = F\cos\theta$	$Fy = F\sin\theta$
unit	[N]	[°]	[N]	[N]
A	2.94	0	2.94	0
В	1.96	109	-0.638	1.853
С	2.45	180	-2.45	0
D	1.96	276	0.205	-1.949
		ΣΓx, ΣΓy	0.057	-0.096

$$F = \sqrt{(\Sigma F x)^2 + (\Sigma F y)^2} = \sqrt{(0.057)^2 + (-0.096)^2} = 0.112 \implies 0.11N$$

$$\theta = tan^{-1} \frac{\Sigma Fy}{\Sigma Fx} = tan^{-1} \frac{-0.096}{0.057} = -59.36 \implies \underline{300.7}^{\circ}$$

(6) Table6, Math Method of Exp.3

Exp.3	F	θ	$Fx = F\cos\theta$	$Fy = F\sin \theta$
unit	[N]	[°]	[N]	[N]
A	2.94	0	2.94	0
В	1.96	109	-0.638	1.853
С	2.95	180	-2.95	0
D	1.96	276	0.205	-1.949
		ΣΕχ, ΣΕγ	-0.443	-0.096

$$F = \sqrt{(\Sigma F x)^2 + (\Sigma F y)^2} = \sqrt{(-0.443)^2 + (-0.096)^2} = 0.453 \implies 0.45N$$

$$\theta = tan^{-1} \frac{\Sigma Fy}{\Sigma Fx} = tan^{-1} \frac{-0.096}{-0.433} = 12.50 \implies \underline{12.5}^{\circ} \times$$

192.50

1925

5 Discussion

- 1) Exp.1
- In Fig1, the length of \vec{A} is almost same as length and force of $\vec{B} + \vec{C}$. And their arrows are almost opposite direction.
- In Fig2, the tail point of \vec{C} almost reaches the head point of \vec{A} .
- In Fig2, net force is almost zero. (0.2N which is found by graph).
- In Table4, net force is almost zero. (0.149N which is found by calculation.)
- ⇒From these sentences, three forces are balanced. And the equation is made.

$$\vec{A} + \vec{B} + \vec{C} = 0$$

- ⇒From calculation result of Table4, the ring is pulled by 0.15N to 82°
- 2) Exp.2
- In Fig3, the length of $\vec{A} + \vec{B}$ is almost same as length and force of $\vec{B} + \vec{C}$. And their arrows are almost opposite direction.
- In Fig4, the tail point of \vec{D} almost reaches the head point of \vec{A} .
- In Fig4, net force is almost zero. (0.133N which is found by graph).
- In Table5, net force is almost zero. (0.112N which is found by calculation.)
- ⇒From these sentences, four forces are balanced. And the equation is made.

$$\vec{A} + \vec{B} + \vec{C} + \vec{D} = 0$$

 \Rightarrow From the calculation result of Table5, the ring is pulled by 0.11N to 300.7°

3) Exp.3

- In Fig5, the length of $\vec{A} + \vec{B}$ is **not** same as length and force of $\vec{B} + \vec{C}$.
- In Fig6, the tail point of \vec{D} does not reach the head point of \vec{A} .
- In Fig6, net force is **not** zero. (0.5N which is found by graph).
- In Table5, net force is **not** zero. (0.453N which is found by calculation.)
- ⇒From these sentences, four forces are **not** balanced.
- \Rightarrow From the calculation result of Table6, the ring is pulled by 0.45N to 12.5°

4) Error

Exp.1	Force (N)	Angle (°)	
Calculation	0.15N	82°	
Graph	0.2N	80°	
Error	0.05N	2°	

Exp.2	Force (N)	Angle (°)	
Calculation	0.11N	300.7°	
Graph	0.133N	302.0°	
Error	0.023N	1.3°	

Exp.3	Force (N)	Angle (°)
Calculation	0.45N	12.5° (8).5°
Graph	0.5N	11.5° (8/,5°
Error	0.05N	0.5°

6 Conclusion

The net force made from several force is 0 at equilibrium

$$\vec{A} + \vec{B} + \vec{C} + \vec{D} = 0$$

7 Opinion

In this experience, it was difficult to find the angles where the ring become the center. I learned how to drew parallelogram method and head-to-tail method, also I learned how to use math method. And I learned net force will be 0 when forces are balanced

8 Reference

Ryuki Shigeta & Chiaki Nagai's report.

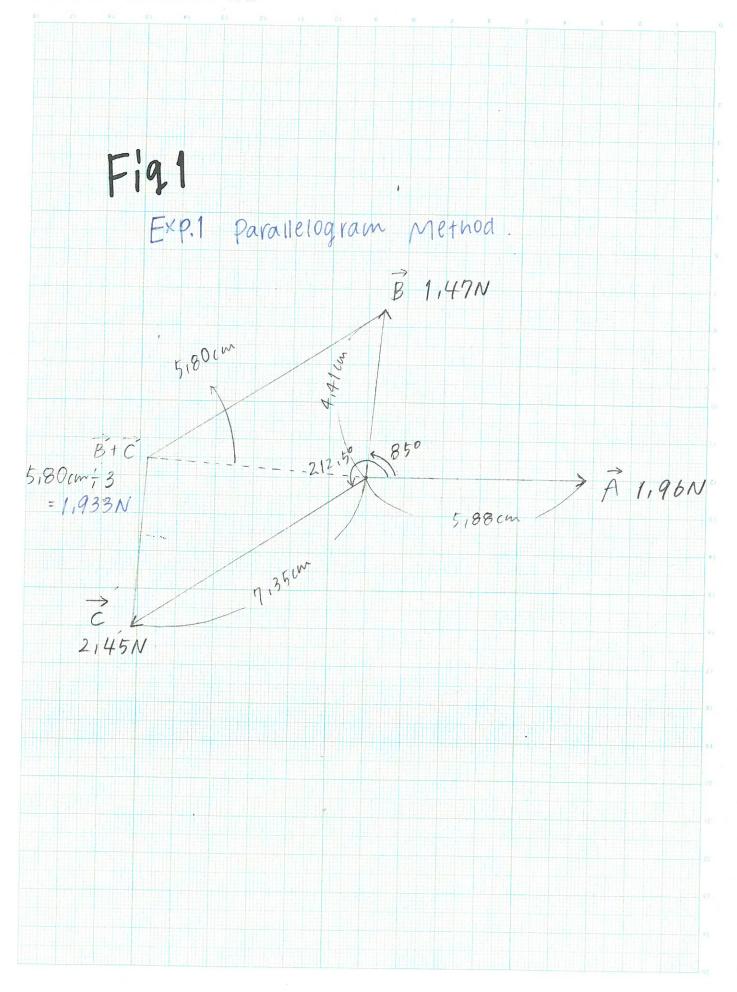


Fig2 Exp. 1 Head-to-tail Method

212,50 C 2145N B 1.47N 0,6cm + 3 = 0,2N À 1,96N

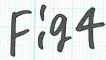
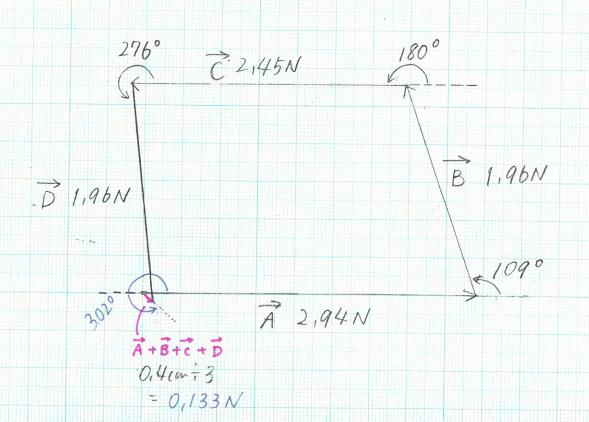
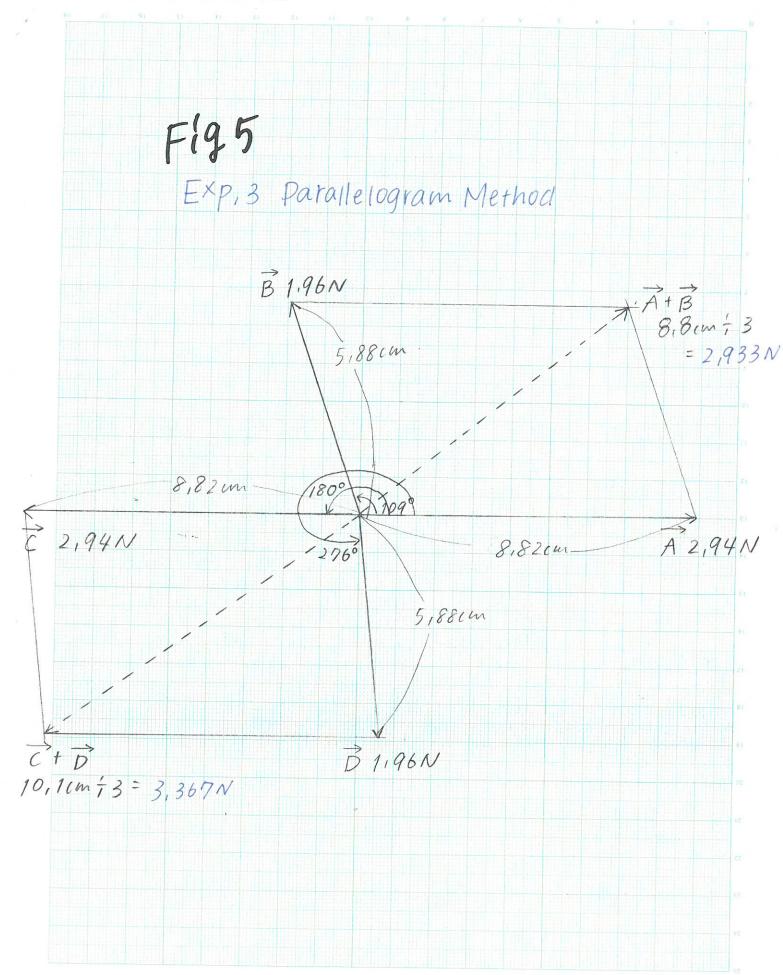




Fig4

Exp. 2 Head-to-tail Method

