D .	CT 1	
Date	of Lab	

-	0	~ 1					
Date	of	SIII	omis	33101	า		
Date	OI	N u	OTITIO			2.510	

Laboratory Report

Title

Oscillation of Spring

Homeroom	Section	Name	~ ^ ^	
127		rame	(historico	Komina
(• ==				

Lab Partners	

What did you learn?
In this lab, We tried to make sure the formula
21 The Exer is correct. We did experiment
and usedspring and timer.
spring constant calculated from Fixe formula is
1. Al was from Spring Covilian Coviliant From 1:20
IND leavned this is Decause resonance of the
spring. I drew 2 graph by the result:

· Meet a deadline · Write logically · Write clearly · Write with your own words

Nice greephs.

1	2	3	4	5	6	7	8	9
Due	Summary	Intro.	Method.	Results	Table/Fig.	Discussion	Clearness	General
提出期限	要旨	序	方法	結果	表/図	考察	わかりやすさ	全般
12/11					++		+	++

^{*} Write your report in English * Use this form as a cover sheet.

^{*} Submit your reports by the due day on your lab.

Result

Table 1

m(kg) (x 1 0^-3)	f(N)	x (m) (x10^-2)	T(s)	T^2 (s^2)
50	0.49	1.0	0.29	0.084
70	0.686	1.8	0.310	0.096
80	0.784	2.0	0.321	0.103
90	0.882	2.4	0.347	0.120
100	0.98	2.8	0.356	0.127
110	1.079	3.0	0.372	0.138
120	1.176	3.4	0.393	0.154
130	1.274	3.6	0.400	0.160
140	1.372	4.0	0.413	0.171
150	1.47	4.3	0.441	0.194
160	1.565	4.5	0.453	0.205
170	1.666	4.8	0.478	0.228

Table2

	Graphl	Graph2	
spring constant		30.95	26.617

Discussion

1. The spring constant k calculated from the diagram and graph 1 Graph 1 is line. It means that elongation is proportion to elastic force. The slope of the graph means inelasticity of spring. If k is big, it would be difficult to strech

$$F = mg$$

 $F = kx$

$$k = \frac{\Delta F}{\Delta x}$$

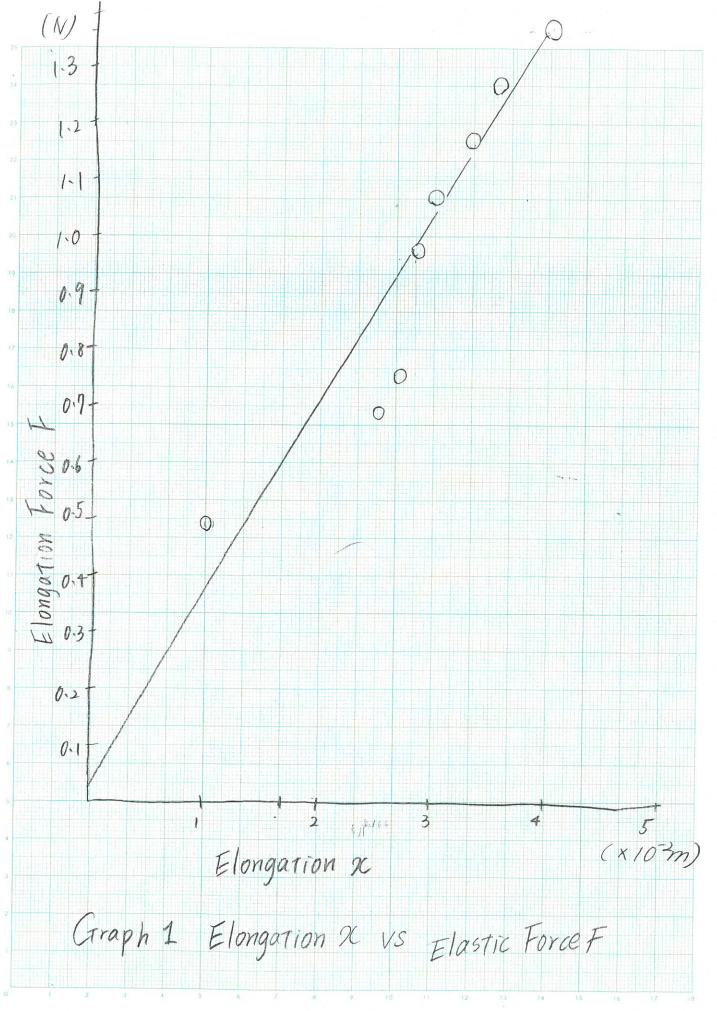
Spring k
$$\frac{1.666 - 0.49}{0.048 - 0.01} = \frac{30.95(N/m)}{1.666 - 0.49} = \frac{30.95(N/m)}{1.666 - 0$$

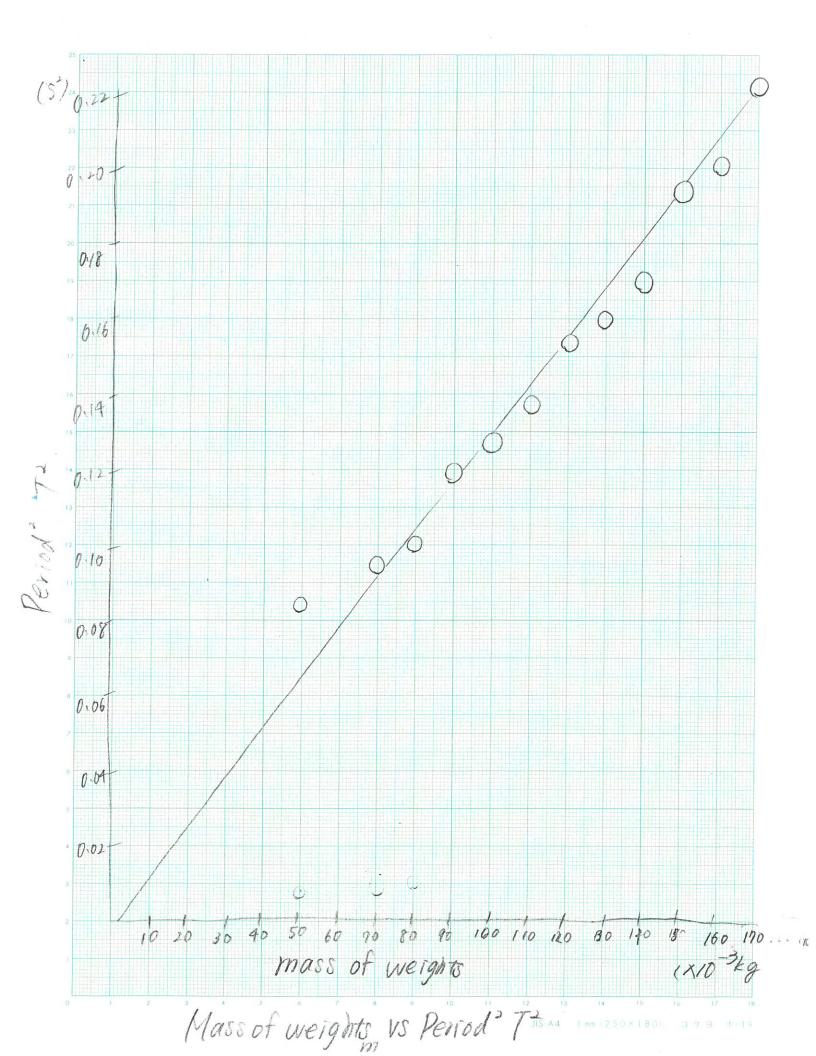
2. The spring constant k can also calculate from comparing mass of weights m vs period^2 T^2. Since Graph 2 is also line, you can say the mass is proportional to Period ^2

$$T = \frac{2\pi}{w}$$

$$T = 2\pi \sqrt{\frac{m}{k}}$$

$$k = \frac{4\pi^{2}\Delta m}{\Delta T^{2}}$$
Spring:
$$k = \frac{4\pi^{2}(0.17 - 0.05)}{4\pi^{2}} = 26.6$$


Spring: k
$$\frac{4\pi^{2}(0.17-0.05)}{0.228-0.084} = 26.617$$
 (N/m)
3. Theoretical Formula T = $\frac{2\pi}{\omega} = 2\pi\sqrt{\frac{m}{k}}$


By Graph 2, you can know that mass is proportional to the period^2.

If you square theoretical formula
$$T^2 = \frac{4\pi^2 m}{k} = \left(\frac{4\pi^2}{k}\right)m$$

you would consider that the mass is proportional to the period^2 by formula.

4. As shown in the table 2, the spring constant k calculated from graph 1 is greater than graph2. It was because the resonance occurred and the spring did not go up and down straight when using spring and weights. It made the period long. If there was no resonance, the period would be short, the slope of spring in graph2 would be gentle, and the difference would be less.

